ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale photonic network for solution searching and decision making problems

125   0   0.0 ( 0 )
 نشر من قبل Makoto Naruse
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nature-inspired devices and architectures are attracting considerable attention for various purposes, including the development of novel computing techniques based on spatiotemporal dynamics, exploiting stochastic processes for computing, and reducing energy dissipation. This paper demonstrates that networks of optical energy transfers between quantum nanostructures mediated by optical near-field interactions occurring at scales far below the wavelength of light could be utilized for solving a constraint satisfaction problem (CSP), the satisfiability problem (SAT), and a decision making problem. The optical energy transfer from smaller quantum dots to larger ones, which is a quantum stochastic process, depends on the existence of resonant energy levels between the quantum dots or a state-filling effect occurring at the larger quantum dots. Such a spatiotemporal mechanism yields different evolutions of energy transfer patterns in multi-quantum-dot systems. We numerically demonstrate that networks of optical energy transfers can be used for solution searching and decision making. We consider that such an approach paves the way to a novel physical informatics in which both coherent and dissipative processes are exploited, with low energy consumption.

قيم البحث

اقرأ أيضاً

215 - Xinru Wu , Chaoran Huang , Ke Xu 2017
Optical interconnect is a potential solution to attain the large bandwidth on-chip communications needed in high performance computers in a low power and low cost manner. Mode-division multiplexing (MDM) is an emerging technology that scales the capa city of a single wavelength carrier by the number of modes in a multimode waveguide, and is attractive as a cost-effective means for high bandwidth density on-chip communications. Advanced modulation formats with high spectral efficiency in MDM networks can further improve the data rates of the optical link. Here, we demonstrate an intra-chip MDM communications link employing advanced modulation formats with two waveguide modes. We demonstrate a compact single wavelength carrier link that is expected to support 2x100 Gb/s mode multiplexed capacity. The network comprised integrated microring modulators at the transmitter, mode multiplexers, multimode waveguide interconnect, mode demultiplexers and integrated germanium on silicon photodetectors. Each of the mode channels achieves 100 Gb/s line rate with 84 Gb/s net payload data rate at 7% overhead for hard-decision forward error correction (HD-FEC) in the OFDM/16-QAM signal transmission.
In this paper we investigate the use of MPC-inspired neural network policies for sequential decision making. We introduce an extension to the DAgger algorithm for training such policies and show how they have improved training performance and general ization capabilities. We take advantage of this extension to show scalable and efficient training of complex planning policy architectures in continuous state and action spaces. We provide an extensive comparison of neural network policies by considering feed forward policies, recurrent policies, and recurrent policies with planning structure inspired by the Path Integral control framework. Our results suggest that MPC-type recurrent policies have better robustness to disturbances and modeling error.
Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it is known, require efficient solution methods in a variety of applications. It is the decision problem of determining whether a Boolean formula has a satisfying assignment, believed to require exponentially growing time for an algorithm to solve for the worst-case instances. Yet, the efficient solution of many classes of Boolean formulae eludes even the most successful algorithms, not only for the worst-case scenarios, but also for typical-case instances. Here, we introduce a memory-assisted physical system (a digital memcomputing machine) that, when its non-linear ordinary differential equations are integrated numerically, shows evidence for polynomially-bounded scalability while solving hard planted-solution instances of SAT, known to require exponential time to solve in the typical case for both complete and incomplete algorithms. Furthermore, we analytically demonstrate that the physical system can efficiently solve the SAT problem in continuous time, without the need to introduce chaos or an exponentially growing energy. The efficiency of the simulations is related to the collective dynamical properties of the original physical system that persist in the numerical integration to robustly guide the solution search even in the presence of numerical errors. We anticipate our results to broaden research directions in physics-inspired computing paradigms ranging from theory to application, from simulation to hardware implementation.
Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advance s in photonic integrated circuits have enabled research in photonic computation, where, despite excellent features such as fast linear computation, no integrated photonic deep network has been demonstrated to date due to the lack of scalable nonlinear functionality and the loss of photonic devices, making scalability to a large number of layers challenging. Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs instantaneous image classification through direct processing of optical waves. Images are formed on the input pixels and optical waves are coupled into nanophotonic waveguides and processed as the light propagates through layers of neurons on-chip. Each neuron generates an optical output from input optical signals, where linear computation is performed optically and the nonlinear activation function is realised opto-electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons within the network providing the same per-neuron supply light. Thus, all neurons have the same optical output range enabling scalability to deep networks with large number of layers. The PDNN chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher than 93.7% and 90.3%, respectively, with a computation time less than one clock cycle of state-of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates photo-detection, A/D conversion, and the requirement for a large memory module, enabling significantly faster and more energy-efficient neural networks for the next generations of deep learning systems.
Regret minimization has proved to be a versatile tool for tree-form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are curre ntly the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the players decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs -- even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restrictions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used -- for example, those in which only black-box access to the environment is available. We give the first, to our knowledge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i) -- and thus also (ii) -- is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encounters new decision points. We give an efficient algorithm that achieves $O(T^{3/4})$ regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algorithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا