ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission

121   0   0.0 ( 0 )
 نشر من قبل Laurenz Rettig
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on results from femtosecond time-resolved photoemission, we compare three different methods for determination of the electron-phonon coupling constant {lambda} in Eu and Ba-based 122 FeAs compounds. We find good agreement between all three methods, which reveal a small {lambda} < 0.2. This makes simple electron-phonon mediated superconductivity unlikely in these compounds.



قيم البحث

اقرأ أيضاً

106 - A. Pogrebna 2014
We systematically investigate temperature- and spectrally-dependent optical reflectivity dynamics in AAs$_{2}$Fe$_{2}$, (A=Ba, Sr and Eu), iron-based superconductors parent spin-density-wave (SDW) compounds. Two different relaxation processes are ide ntified. The behavior of the slower process, which is strongly sensitive to the magneto-structural transition, is analyzed in the framework of the relaxation-bottleneck model involving magnons. The results are compared to recent time resolved angular photoemission results (TR-ARPES) and possible alternative assignment of the slower relaxation to the magneto-structural order parameter relaxation is discussed.
The Fe pnictide parent compound EuFe2As2 exhibits a strongly momentum dependent carrier dynamics around the hole pocket at the center of the Brillouin zone. The very different dynamics of electrons and holes cannot be explained solely by intraband sc attering and interband contributions have to be considered. In addition, three coherently excited modes at frequencies of 5.6, 3.1 and 2.4 THz are observed. An estimate of the electron-phonon coupling parameter reveals lambda < 0.5, suggesting a limited importance of e-ph coupling to superconductivity in Fe pnictides.
We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe_2As_2 and optimally doped BaFe_{1.85}Co_{0.15}As_2 near the Gamma point to femtosecond optical excitation. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The response of the three different materials is very similar. In the Fourier transformation of the time-dependent photoemission intensity we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A_{1g} mode, the other two modes require a discussion in comparison to literature. The time-dependent evolution of the hot electron distribution follows a simplified description of a transient three temperature model which considers two heat baths of lattice vibrations, which are more weakly and strongly coupled to transiently excited electron population. Still the energy transfer from electrons to the strongly coupled phonons results in a rather weak, momentum-averaged electron-phonon coupling quantified by values for lambda<omega^2> between 30 and 70 meV^2. The chemical potential is found to present a transient modulation induced by the coherent phonons. This change in the chemical potential is particularly strong in a two band system like in the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electrons density of states close to the equilibrium chemical potential.
Employing femtosecond laser pulses in front and back side pumping of Au/Fe/MgO(001) combined with detection in two-photon photoelectron emission spectroscopy we analyze local relaxation dynamics of excited electrons in buried Fe, injection into Au ac ross the Fe-Au interface, and electron transport across the Au layer at 0.6 to 2.0 eV above the Fermi energy. By analysis as a function of Au film thickness we obtain the electron lifetimes of bulk Au and Fe and distinguish the relaxation in the heterostructures constituents. We also show that the excited electrons propagate through Au in a superdiffusive regime and conclude further that electron injection across the epitaxial interface proceeds ballistically by electron wavepacket propagation.
We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorp tion resonance. We apply it to the cuprate parent compound NdBa$_2$Cu$_3$O$_6$ and find that the electronic coupling to the oxygen half-breathing phonon mode is strongest at the Brillouin zone boundary, where it amounts to $sim 0.17$ eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا