ترغب بنشر مسار تعليمي؟ اضغط هنا

Long baseline neutrino beams at Fermilab

139   0   0.0 ( 0 )
 نشر من قبل Sam Childress
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermilab has had a very active long baseline neutrino program since initiation of the NuMI project in 1998. Commissioned in 2005, the NuMI beam with 400 kW design power has been in operation for the MINOS neutrino oscillation program since that time. Upgrade of NuMI to 700 kW for NOvA is now well advanced, with implementation of the beam upgrades to be accomplished in 2012-2013. Design development for the next generation LBNE neutrino beam is now a major ongoing effort. We report here salient features and constraints for each of these beams, as well as significant challenges both experienced and expected.



قيم البحث

اقرأ أيضاً

126 - J-P. Delahaye 2018
A Neutrino Factory where neutrinos of all species are produced in equal quantities by muon decay is described as a facility at the intensity frontier for exquisite precision providing ideal conditions for ultimate neutrino studies and the ideal compl ement to Long Baseline Facilities like LBNF at Fermilab. It is foreseen to be built in stages with progressively increasing complexity and performance, taking advantage of existing or proposed facilities at an existing laboratory like Fermilab. A tentative layout based on a recirculating linac providing opportunities for considerable saving is discussed as well as its possible evolution toward a muon collider if and when requested by Physics. Tentative parameters of the various stages are presented as well as the necessary R&D to address the technological issues and demonstrate their feasibility.
122 - Sacha E. Kopp 2005
The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy (2-20 GeV) directed into the Earth at 58 mrad for short (~1km) and long (~700-900 km) bas eline experiments. Several aspects of the design and results from early commissioning runs are reviewed.
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventio nal neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least $3sigma$ for 50% of the true values of $delta_{CP}$ with a 20 kton detector. With a far detector of 70 kton, the combination allows a $3sigma$ sensitivity for 75% of the true values of $delta_{CP}$ after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within todays state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.
The Fermilab Short-Baseline Neutrino (SBN) experiments, MicroBooNE, ICARUS, and SBND, are expected to have significant sensitivity to light weakly coupled hidden sector particles. Here we study the capability of the SBN experiments to probe dark scal ars interacting through the Higgs portal. We investigate production of dark scalars using both the Fermilab Booster 8 GeV and NuMI 120 GeV proton beams, simulating kaons decaying to dark scalars and taking into account the beamline geometry. We also investigate strategies to mitigate backgrounds from beam-related neutrino scattering events. We find that SBND, with its comparatively short ${cal O}(100 {rm m})$ baseline, will have the best sensitivity to scalars produced with Booster, while ICARUS, with its large detector volume, will provide the best limits on off-axis dark scalar production from NuMI. The SBN experiments can provide leading tests of dark scalars with masses in the 50 - 350 MeV range in the near term. Our results motivate dedicated experimental searches for dark scalars and other long-lived hidden sector states at these experiments.
The Short-Baseline Neutrino, or SBN, program consists of three liquid argon time projection chamber detectors located along the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. Its main goals include searches for new physics - part icularly eV-scale sterile neutrinos, detailed studies of neutrino-nucleus interactions at the GeV energy scale, and the advancement of the liquid argon detector technology that will also be used in the DUNE/LBNF long-baseline neutrino experiment in the next decade. Here we review these science goals and the current experimental status of SBN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا