ترغب بنشر مسار تعليمي؟ اضغط هنا

Local cohomology modules of a smooth Z-algebra have finitely many associated primes

240   0   0.0 ( 0 )
 نشر من قبل Anurag K. Singh
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $R$ be a commutative Noetherian ring that is a smooth $mathbb Z$-algebra. For each ideal $I$ of $R$ and integer $k$, we prove that the local cohomology module $H^k_I(R)$ has finitely many associated prime ideals. This settles a crucial outstanding case of a conjecture of Lyubeznik asserting this finiteness for local cohomology modules of all regular rings.



قيم البحث

اقرأ أيضاً

Let fa be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Let cd_{fa}(M,N) denote the supremum of the is such that H^i_{fa}(M,N) eq 0. First, by using the theory of Gorenstein homological dimensions, we obtai n several upper bounds for cd_{fa}(M,N). Next, over a Cohen-Macaulay local ring (R,fm), we show that cd_{fm}(M,N)=dim R-grade(Ann_RN,M), provided that either projective dimension of M or injective dimension of N is finite. Finally, over such rings, we establish an analogue of the Hartshorne-Lichtenbaum Vanishing Theorem in the context of generalized local cohomology modules.
Let fa be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. We explore the behavior of the two notions f_{fa}(M), the finiteness dimension of M with respect to fa, and, its dual notion q_{fa}(M), the Artinianess dimensi on of M with respect to fa. When (R,fm) is local and r:=f_{fa}(M) is less than f_{fa}^{fm}(M), the fm-finiteness dimension of M relative to fa, we prove that H^r_{fa}(M) is not Artinian, and so the filter depth of fa on M doesnt exceeds f_{fa}(M). Also, we show that if M has finite dimension and H^i_{fa}(M) is Artinian for all i>t, where t is a given positive integer, then H^t_{fa}(M)/fa H^t_{fa}(M) is Artinian. It immediately implies that if q:=q_{fa}(M)>0, then H^q_{fa}(M) is not finitely generated, and so f_{fa}(M)leq q_{fa}(M).
Let $A$ be a commutative Noetherian ring containing a field $K$ of characteristic zero and let $R= A[X_1, ldots, X_m]$. Consider $R$ as standard graded with $deg A=0$ and $deg X_i=1$ for all $i$. We present a few results about the behavior of the gra ded components of local cohomology modules $H_I^i(R)$ where $I$ is an arbitrary homogeneous ideal in $R$. We mostly restrict our attention to the Vanishing, Tameness and Rigidity problems.
125 - Ezra Miller 2019
The commutative and homological algebra of modules over posets is developed, as closely parallel as possible to the algebra of finitely generated modules over noetherian commutative rings, in the direction of finite presentations, primary decompositi ons, and resolutions. Interpreting this finiteness in the language of derived categories of subanalytically constructible sheaves proves two conjectures due to Kashiwara and Schapira concerning sheaves with microsupport in a given cone. The motivating case is persistent homology of arbitrary filtered topological spaces, especially the case of multiple real parameters. The algebraic theory yields computationally feasible, topologically interpretable data structures, in terms of birth and death of homology classes, for persistent homology indexed by arbitrary posets. The exposition focuses on the nature and ramifications of a suitable finiteness condition to replace the noetherian hypothesis. The tameness condition introduced for this purpose captures finiteness for variation in families of vector spaces indexed by posets in a way that is characterized equivalently by distinct topological, algebraic, combinatorial, and homological manifestations. Tameness serves both the theoretical and computational purposes: it guarantees finite primary decompositions, as well as various finite presentations and resolutions all related by a syzygy theorem, and the data structures thus produced are computable in addition to being interpretable. The tameness condition and its resulting theory are new even in the finitely generated discrete setting, where being tame is materially weaker than being noetherian.
We study the symmetric subquotient decomposition of the associated graded algebras $A^*$ of a non-homogeneous commutative Artinian Gorenstein (AG) algebra $A$. This decomposition arises from the stratification of $A^*$ by a sequence of ideals $A^*=C_ A(0)supset C_A(1)supsetcdots$ whose successive quotients $Q(a)=C(a)/C(a+1)$ are reflexive $A^*$ modules. These were introduced by the first author, and have been used more recently by several groups, especially those interested in short Gorenstein algebras, and in the scheme length (cactus rank) of forms. For us a Gorenstein sequence is an integer sequence $H$ occurring as the Hilbert function for an AG algebra $A$, that is not necessarily homogeneous. Such a Hilbert function $H(A)$ is the sum of symmetric non-negative sequences $H_A(a)=H(Q_A(a))$, each having center of symmetry $(j-a)/2$ where $j$ is the socle degree of $A$: we call these the symmetry conditions, and the decomposition $mathcal{D}(A)=(H_A(0),H_A(1),ldots)$ the symmetric decomposition of $H(A)$. We here study which sequences may occur as the summands $H_A(a)$: in particular we construct in a systematic way examples of AG algebras $A$ for which $H_A(a)$ can have interior zeroes, as $H_A(a)=(0,s,0,ldots,0,s,0)$. We also study the symmetric decomposition sets $mathcal{D}(A)$, and in particular determine which sequences $H_A(a)$ can be non-zero when the dual generator is linear in a subset of the variables. Several groups have studied exotic summands of the Macaulay dual generator $F$. Studying these, we recall a normal form for the Macaulay dual generator of an AG algebra that has no exotic summands. We apply this to Gorenstein algebras that are connected sums. We give throughout many examples and counterexamples, and conclude with some open questions about symmetric decomposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا