ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation study of some solar activity indices in the cycles 21 - 23

60   0   0.0 ( 0 )
 نشر من قبل Elena Bruevich Alecsandrovna
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correlation coefficients of the linear regression of six solar indices versus F10,7 were analyzed in solar cycles 21, 22 and 23. We also analyzed the interconnection between these indices and F10,7 with help of the approximation by the polynomials of second order. The indices weve studied in this paper are: Wolf numbers - W, 530,3 nm coronal line flux - F530, the total solar irradiance - TSI, Mg II UV-index 280 nm core-to-wing ratio, Flare Index - FI and Counts of flares. In the most cases the regressions of these solar indices versus F10,7 are close to linear except the moments of time near to the minimums and maximums of 11-year activity. For the linear regressions we found that the values of correlation coefficients Kcorr(t) for the indices versus F10,7 and W show the cyclic variations with periods approximately equal to the to half length of 11-year cycle - 5,5 years approximately.

قيم البحث

اقرأ أيضاً

81 - Mykola I. Pishkalo 2019
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in th e rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range pm(55-90)^circ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116 pm 12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
77 - Bhuwan Joshi , P. Pant , 2009
The data of sunspot numbers, sunspot areas and solar flare index during cycle 23 are analyzed to investigate the intermediate-term periodicities. Power spectral analysis has been performed separately for the data of the whole disk, northern and south ern hemispheres of the Sun. Several significant midrange periodicities ($sim$175, 133, 113, 104, 84, 63 days) are detected in sunspot activity. Most of the periodicities in sunspot numbers generally agree with those of sunspot areas during the solar cycle 23. The study reveals that the periodic variations in the northern and southern hemispheres of the Sun show a kind of asymmetrical behavior. Periodicities of $sim$175 days and $sim$133 days are highly significant in the sunspot data of northern hemisphere showing consistency with the findings of Lean (1990) during solar cycles 12-21. On the other hand, southern hemisphere shows a strong periodicity of about 85 days in terms of sunspot activity. The analysis of solar flare index data of the same time interval does not show any significant peak. The different periodic behavior of sunspot and flare activity can be understood in the light of hypothesis proposed by Ballester et al. (2002), which suggests that during cycle 23, the periodic emergence of magnetic flux partly takes place away from developed sunspot groups and hence may not necessarily increase the magnetic complexity of sunspot groups that leads to the generation of flares.
58 - C. Regulo , R. A. Garcia , 2016
Aims. We aim studying the use of cross-correlation techniques to infer the frequency shifts induced by changing magnetic fields in the p-mode frequencies and provide precise estimation of the error bars. Methods. This technique and the calculation of the associated errors is first tested and validated on the Sun where the p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546 observed by Kepler. Results. We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three analyzed stars we confirm the presence of a magnetic activity cycle with this methodology in HD 49933 and we unveil seismic signature of on going magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.
167 - Bhuwan Joshi 2017
Aims. In this paper, we investigate the temporal evolution and north-south (N-S) asymmetry in the occurrence of solar flares during cycle 21, 22, and 23, and compare the results with traditional solar activity indices. Methods. The flare activity is characterized by a soft X-ray (SXR) flare index, which incorporates information about flare occurrences during a selected interval along with the peak intensity of individual events. Results. The SXR flare index correlates well with other conventional parameters of solar activity. Further, it exhibits a significantly higher correlation with sunspot area over sunspot number, which suggests the variations in sunspot area to be more closely linked with the transient energy release in the solar corona. The cumulative plots of the flare index indicate a slight excess of activity in the northern hemisphere during cycle 21, while a southern excess clearly prevails for cycles 22 and 23. The study reveals a significant N-S asymmetry, which exhibits variations with the phases of solar cycle. The reliability and persistency of this asymmetry significantly increases when the data is averaged over longer periods, while an optimal level is achieved when data is binned for 13 Carrington rotations. The time evolution of the flare index further confirms evolution of dual peaks in solar cycles during the solar maxima and violation of Gnevyshev-Ohl rule for the pair of solar cycles 22 and 23. Conclusions. The SXR flare index in the northern and the southern hemispheres of the Sun exhibits significant asymmetry during the evolutionary phases of the solar cycle, which implies that N-S asymmetry of solar flares is manifested in terms of the flare counts as well as the intensity of flare events.
The evolution of the solar activity comprises, apart from the well-known 11-year cycle, various temporal scales ranging from months up to the secondary cycles known as mid-term oscillations. Its nature deserves a physical explanation. In this work, w e consider the 5-to-6 year oscillations as derived both from sunspot and from solar magnetic dipole time series. Using the solar dynamo model, we deduced that these variations may be a manifestation of the dynamo nonlinearities and non-harmonic shape of the solar activity cycles. We conclude that the observed mid-term oscillations are related to the nonlinear saturation of the dynamo processes in the solar interior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا