ترغب بنشر مسار تعليمي؟ اضغط هنا

Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions

78   0   0.0 ( 0 )
 نشر من قبل Milena Lazova
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemoreceptors McpB and McpC in Salmonella enterica have been reported to promote chemotaxis in LB motility-plate assays. Of the chemicals tested as potential effectors of these receptors, the only response was towards L-cysteine and its oxidized form, L-cystine. Although enhanced radial migration in plates suggested positive chemotaxis to both amino acids, capillary assays failed to show an attractant response to either, in cells expressing only these two chemoreceptors. In vivo fluorescence resonance energy transfer (FRET) measurements of kinase activity revealed that in wild-type bacteria, cysteine and cystine are chemoeffectors of opposing sign, the reduced form being a chemoattractant and the oxidized form a repellent. The attractant response to cysteine was mediated primarily by Tsr, as reported earlier for E. coli. The repellent response to cystine was mediated by McpB / C. Adaptive recovery upon cystine exposure required the methyl-transferase/-esterase pair, CheR / CheB, but restoration of kinase activity was never complete (i.e. imperfect adaptation). We provide a plausible explanation for the attractant-like responses to both cystine and cysteine motility plates, and speculate that the opposing signs of response to this redox pair might afford Salmonella a mechanism to gauge and avoid oxidative environments.



قيم البحث

اقرأ أيضاً

326 - Thierry Rabilloud 2008
The oxidative stress response is characterized by various effects on a range of biologic molecules. When examined at the protein level, both expression levels and protein modifications are altered by oxidative stress. While these effects have been st udied in the past by classic biochemical methods, the recent onset of proteomics methods has allowed the oxidative stress response to be studied on a much wider scale. The input of proteomics in the study of oxidative stress response and in the evidence of an oxidative stress component in biologic phenomena is reviewed in this paper.
Cancer is increasingly perceived as a systems-level, network phenomenon. The major trend of malignant transformation can be described as a two-phase process, where an initial increase of network plasticity is followed by a decrease of plasticity at l ate stages of tumor development. The fluctuating intensity of stress factors, like hypoxia, inflammation and the either cooperative or hostile interactions of tumor inter-cellular networks, all increase the adaptation potential of cancer cells. This may lead to the bypass of cellular senescence, and to the development of cancer stem cells. We propose that the central tenet of cancer stem cell definition lies exactly in the indefinability of cancer stem cells. Actual properties of cancer stem cells depend on the individual stress-history of the given tumor. Cancer stem cells are characterized by an extremely large evolvability (i.e. a capacity to generate heritable phenotypic variation), which corresponds well with the defining hallmarks of cancer stem cells: the possession of the capacity to self-renew and to repeatedly re-build the heterogeneous lineages of cancer cells that comprise a tumor in new environments. Cancer stem cells represent a cell population, which is adapted to adapt. We argue that the high evolvability of cancer stem cells is helped by their repeated transitions between plastic (proliferative, symmetrically dividing) and rigid (quiescent, asymmetrically dividing, often more invasive) phenotypes having plastic and rigid networks. Thus, cancer stem cells reverse and replay cancer development multiple times. We describe network models potentially explaining cancer stem cell-like behavior. Finally, we propose novel strategies including combination therapies and multi-target drugs to overcome the Nietzschean dilemma of cancer stem cell targeting: what does not kill me makes me stronger.
204 - Yoshihisa Tanaka 2020
The current pandemic of SARS-CoV-2 has caused extensive damage to society. The characterization of SARS-CoV-2 profiles has been addressed by researchers globally with the aim of resolving this disruptive crisis. This investigation process is indispen sable for an understanding of how SARS-CoV-2 behaves in human host cells. However, little is known about the systematic molecular mechanisms involved in the effect of SARS-CoV-2 infection on human host cells. Here, we have presented gene-to-gene regulatory networks in response to SARS-CoV-2 using a Bayesian network. We examined the dynamic changes of the SARS-CoV-2-purturbated networks established by our proposed framework for gene network analysis, revealing that interferon signaling gradually switches to the subsequent inflammatory-cytokine signaling cascades. Furthermore, we have succeeded in capturing a COVID-19 patient-specific network in which transduction of these signalings is coincidently induced. This enabled us to explore local regulatory systems influenced by SARS-CoV-2 in host cells more precisely at an individual level. Our panel of network analyses has provided new insight into SARS-CoV-2 research from the perspective of cellular systems.
227 - Peijie Zhou , Tiejun Li 2015
Motivated by the famous Waddingtons epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to realize this metaphor in a rationalized way. We adopt comprehensive perspectives to syste matically investigate three different but closely related realizations in recent literature: namely the potential landscape theory from the steady state distribution of stochastic differential equations (SDEs), the quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral.The connections among these theories are established in this paper. We demonstrate that the quasi-potential is the zero noise limit of the potential landscape. We also show that the potential function in the third proposal coincides with the quasi-potential. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is discussed as well. Furthermore, we compare the difference between local and global quasi-potential through the exchange of limit order for time and noise amplitude. As a consequence of such explorations, we arrive at the existence result for the SDE decomposition while deny its uniqueness in general cases. It is also clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than the original one. Our results contribute to a better understanding of existing landscape theories for biological systems.
Characterizing the capabilities, criticalities and response to perturbations of genome-scale metabolic networks is a basic problem with important applications. A key question concerns the identification of the potentially most harmful knockouts. The integration of combinatorial methods with sampling techniques to explore the space of viable flux states may provide crucial insights on this issue. We assess the replaceability of every metabolic conversion in the human red blood cell by enumerating the alternative paths from substrate to product, obtaining a complete map of the potential damage of single enzymopathies. Sampling the space of optimal flux states in the healthy and in the mutated cell reveals both correlations and complementarity between topologic and dynamical aspects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا