ترغب بنشر مسار تعليمي؟ اضغط هنا

When Matter Matters

267   0   0.0 ( 0 )
 نشر من قبل Ignacy Sawicki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Damien A. Easson




اسأل ChatGPT حول البحث

We study a recently proposed scenario for the early universe: Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions -- to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.



قيم البحث

اقرأ أيضاً

We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are su fficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.
We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in bot h comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.
We analyze the cosmological signatures visible to an observer in a Coleman-de Luccia bubble when another such bubble collides with it. We use a gluing procedure to generalize the results of Freivogel, Horowitz, and Shenker to the case of a general co smological constant in each bubble and study the resulting spacetimes. The collision breaks the isotropy and homogeneity of the bubble universe and provides a cosmological axis of evil which can affect the cosmic microwave background in several unique and potentially detectable ways. Unlike more conventional perturbations to the inflationary initial state, these signatures can survive even relatively long periods of inflation. In addition, we find that for a given collision the observers in the bubble with smaller cosmological constant are safest from collisions with domain walls, possibly providing another anthropic selection principle for small positive vacuum energy.
We study ghost-free multimetric theories for $(N+1)$ tensor fields with a coupling to matter and maximal global symmetry group $S_Ntimes(Z_2)^N$. Their mass spectra contain a massless mode, the graviton, and $N$ massive spin-2 modes. One of the massi ve modes is distinct by being the heaviest, the remaining $(N-1)$ massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case $N=2$. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.
Positivity bounds - constraints on any low-energy effective field theory imposed by the fundamental axioms of unitarity, causality and locality in the UV - have recently been used to constrain scalar-tensor theories of dark energy. However, the coupl ing to matter fields has so far played a limited role. We show that demanding positivity when including interactions with standard matter fields leads to further constraints on the dark energy parameter space. We demonstrate how implementing these bounds as theoretical priors affects cosmological parameter constraints and explicitly illustrate the impact on a specific Effective Field Theory for dark energy. We also show in this model that the existence of a standard UV completion requires that gravitational waves must travel superluminally on cosmological backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا