ﻻ يوجد ملخص باللغة العربية
Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M_{odot} neutron star, 5.6 M_{odot} black hole), high spin (black hole J/M^2=0.9) system with the K_0=220 MeV Lattimer-Swesty equation of state. We find that about 0.08 M_{odot} of nuclear matter is ejected from the system, while another 0.3 M_{odot} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (i) to make the disk much denser and more compact, (ii) to cause the average electron fraction Y_e of the disk to rise to about 0.2 and then gradually decrease again, and (iii) to gradually cool the disk. The disk is initially hot (T~6 MeV) and luminous in neutrinos (L_{ u}~10^{54} erg s^{-1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.
We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_odot-10M_odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperatu
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes.
Recently, the direct detection of gravitational waves from black hole (BH) mergers was announced by the Advanced LIGO Collaboration. Multi-messenger counterparts of stellar-mass BH mergers are of interest, and it had been suggested that a small disk
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv
LIGO and Virgos third observing run (O3) revealed the first neutron star-black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements creating optical/near-IR kilonova (KN) emission. The join