ﻻ يوجد ملخص باللغة العربية
We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz- 20 GHz) of filter made of four metal powders with a grain size below 50 um. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal powder filters the attenuation increases with temperature. Compared to classical powder filters, the design presented here is much less laborious to fabricate and specifically the copper powder PCB-filters deliver an equal or even better performance than their classical counterparts.
The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties of conductors at small scales. Novel electronic implementations of quantum optics devices are now available with perspectives such as flying qubit
Electron transport in mesoscopic contacts at low temperatures is accompanied by logarithmically divergent equilibrium noise. We show that this equilibrium noise can be dramatically suppressed in the case of a tunnel junction with modulated (time-depe
We demonstrate the transmission of single electron wavepackets from a clock-controlled source through an empty high-energy edge channel. The quantum dot source is loaded with single electrons which are then emitted with high kinetic energy ($sim$150
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots.
We developed a wideband quasi-optical band-pass filter covering 170-520 GHz by exploiting the recent advancements in commercially available flexible printed circuit (FPC) fabrication technologies. We designed and fabricated a three-layered stack of l