ترغب بنشر مسار تعليمي؟ اضغط هنا

Total screening and finite range forces from ultra-massive scalar fields

240   0   0.0 ( 0 )
 نشر من قبل Henryk Arodz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Force between static point particles coupled to a classical ultra-massive scalar field is calculated. The field potential is proportional to the modulus of the field. It turns out that the force exactly vanishes when the distance between the particles exceeds certain finite value. Moreover, each isolated particle is surrounded by a compact cloud of the scalar field that completely screens its scalar charge.

قيم البحث

اقرأ أيضاً

A method to unitarize the scattering amplitude produced by infinite-range forces is developed and applied to Born terms. In order to apply $S$-matrix techniques, based on unitarity and analyticity, we first derive an $S$-matrix free of infrared diver gences. This is achieved by removing a divergent phase factor due to the interactions mediated by the massless particles in the crossed channels, a procedure that is related to previous formalisms to treat infrared divergences. We apply this method in detail by unitarizing the Born terms for graviton-graviton scattering in pure gravity and we find a scalar graviton-graviton resonance with vacuum quantum numbers ($J^{PC}=0^{++}$) that we call the textit{graviball}. Remarkably, this resonance is located below the Planck mass but deep in the complex $s$-plane (with $s$ the usual Mandelstam variable), so that its effects along the physical real $s$ axis peak for values significantly lower than this scale. We argue that the position and width of the graviball are reduced when including extra light fields in the theory. This could lead to phenomenological consequences in scenarios of quantum gravity with a large number of such fields or, in general, with a low-energy ultraviolet completion. We also apply this formalism to two non-relativistic potentials with exact known solutions for the scattering amplitudes: Coulomb scattering and an energy-dependent potential obtained from the Coulomb one with a zero at threshold. This latter case shares the same $J=0$ partial-wave projected Born term as the graviton-graviton case, except for a global factor. We find that the relevant resonance structure of these examples is reproduced by our methods, which represents a strong indication of their robustness.
97 - Nakwoo Kim 2014
We consider scalar fields which are coupled to Einstein gravity with a negative cosmological constant, and construct periodic solutions perturbatively. In particular, we study tachyonic scalar fields whose mass is at or above the Breitenlohner-Freedm an bound in four, five, and seven spacetime dimensions. The critical amplitude of the leading order perturbation, for which the perturbative expansion breaks down, increases as we consider less massive fields. We present various examples including a model with a self-interacting scalar field which is derived from a consistent truncation of IIB supergravity.
The correspondence between Riemann-Finsler geometries and effective field theories with spin-independent Lorentz violation is explored. We obtain the general quadratic action for effective scalar field theories in any spacetime dimension with Lorentz -violating operators of arbitrary mass dimension. Classical relativistic point-particle lagrangians are derived that reproduce the momentum-velocity and dispersion relations of quantum wave packets. The correspondence to Finsler structures is established, and some properties of the resulting Riemann-Finsler spaces are investigated. The results provide support for open conjectures about Riemann-Finsler geometries associated with Lorentz-violating field theories.
We construct black hole solutions in four-dimensional quadratic gravity, supported by a scalar field conformally coupled to quadratic terms in the curvature. The conformal matter Lagrangian is constructed with powers of traces of a conformally covari ant tensor, which is defined in terms of the metric and a scalar field, and has the symmetries of the Riemann tensor. We find exact, neutral and charged, topological black hole solutions of this theory when the Weyl squared term is absent from the action functional. Including terms beyond quadratic order on the conformally covariant tensor, allows to have asymptotically de Sitter solutions, with a potential that is bounded from below. For generic values of the couplings we also show that static black hole solutions must have a constant Ricci scalar, and provide an analysis of the possible asymptotic behavior of both, the metric as well as the scalar field in the asymptotically AdS case, when the solutions match those of general relativity in vacuum at infinity. In this frame, the spacetime fulfils standard asymptotically AdS boundary conditions, and in spite of the non-standard couplings between the curvature and the scalar field, there is a family of black hole solutions in AdS that can be interpreted as localized objects. We also provide further comments on the extension of these results to higher dimensions.
229 - Dieter Lust , Eran Palti 2017
The Weak Gravity Conjecture (WGC) bounds the mass of a particle by its charge. It is expected that this bound can not be below the ultraviolet cut-off scale of the effective theory. Recently, an extension of the WGC was proposed in the presence of sc alar fields. We show that this more general version can bound the mass of a particle to be arbitrarily far below the ultraviolet cut-off of the effective theory. It therefore manifests a form of hierarchical UV/IR mixing. This has possible implications for naturalness. We also present new evidence for the proposed contribution of scalar fields to the WGC by showing that it matches the results of dimensional reduction. In such a setup the UV/IR mixing is tied to the interaction between the WGC and non-local gauge operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا