ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Relation between Context-Free Grammars and Parsing Expression Grammars

141   0   0.0 ( 0 )
 نشر من قبل S\\'ergio Medeiros
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Context-Free Grammars (CFGs) and Parsing Expression Grammars (PEGs) have several similarities and a few differences in both their syntax and semantics, but they are usually presented through formalisms that hinder a proper comparison. In this paper we present a new formalism for CFGs that highlights the similarities and differences between them. The new formalism borrows from PEGs the use of parsing expressions and the recognition-based semantics. We show how one way of removing non-determinism from this formalism yields a formalism with the semantics of PEGs. We also prove, based on these new formalisms, how LL(1) grammars define the same language whether interpreted as CFGs or as PEGs, and also show how strong-LL(k), right-linear, and LL-regular grammars have simple language-preserving translations from CFGs to PEGs.



قيم البحث

اقرأ أيضاً

Parsing Expression Grammars (PEGs) are a formalism that can describe all deterministic context-free languages through a set of rules that specify a top-down parser for some language. PEGs are easy to use, and there are efficient implementations of PE G libraries in several programming languages. A frequently missed feature of PEGs is left recursion, which is commonly used in Context-Free Grammars (CFGs) to encode left-associative operations. We present a simple conservative extension to the semantics of PEGs that gives useful meaning to direct and indirect left-recursive rules, and show that our extensions make it easy to express left-recursive idioms from CFGs in PEGs, with similar results. We prove the conservativeness of these extensions, and also prove that they work with any left-recursive PEG. PEGs can also be compiled to programs in a low-level parsing machine. We present an extension to the semantics of the operations of this parsing machine that let it interpret left-recursive PEGs, and prove that this extension is correct with regards to our semantics for left-recursive PEGs.
Most scripting languages nowadays use regex pattern-matching libraries. These regex libraries borrow the syntax of regular expressions, but have an informal semantics that is different from the semantics of regular expressions, removing the commutati vity of alternation and adding ad-hoc extensions that cannot be expressed by formalisms for efficient recognition of regular languages, such as deterministic finite automata. Parsing Expression Grammars are a formalism that can describe all deterministic context-free languages and has a simple computational model. In this paper, we present a formalization of regexes via transformation to Parsing Expression Grammars. The proposed transformation easily accommodates several of the common regex extensions, giving a formal meaning to them. It also provides a clear computational model that helps to estimate the efficiency of regex-based matchers, and a basis for specifying provably correct optimizations for them.
We study the computational complexity of universality and inclusion problems for unambiguous finite automata and context-free grammars. We observe that several such problems can be reduced to the universality problem for unambiguous context-free gram mars. The latter problem has long been known to be decidable and we propose a PSPACE algorithm that works by reduction to the zeroness problem of recurrence equations with convolution. We are not aware of any non-trivial complexity lower bounds. However, we show that computing the coin-flip measure of an unambiguous context-free language, a quantitative generalisation of universality, is hard for the long-standing open problem SQRTSUM.
331 - Koichi Takeda 1996
This paper proposes the use of ``pattern-based context-free grammars as a basis for building machine translation (MT) systems, which are now being adopted as personal tools by a broad range of users in the cyberspace society. We discuss major require ments for such tools, including easy customization for diverse domains, the efficiency of the translation algorithm, and scalability (incremental improvement in translation quality through user interaction), and describe how our approach meets these requirements.
Higher-order grammars are extensions of regular and context-free grammars, where non-terminals may take parameters. They have been extensively studied in 1980s, and restudied recently in the context of model checking and program verification. We show that the class of unsafe order-(n+1) word languages coincides with the class of frontier languages of unsafe order-n tree languages. We use intersection types for transforming an order-(n+1) word grammar to a corresponding order-n tree grammar. The result has been proved for safe languages by Damm in 1982, but it has been open for unsafe languages, to our knowledge. Various known results on higher-order grammars can be obtained as almost immediate corollaries of our result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا