ﻻ يوجد ملخص باللغة العربية
We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem $k$-QSAT on large random graphs. As an approximation strategy, we optimize the solution space over `classical product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are: (i) The derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment. (ii) A demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects structure of the solution space of random $k$-QSAT. Simulated annealing exhibits metastability in similar `hard regions of parameter space. (iii) A generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy `landscape of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random $k$-QSAT in a two-dimensional energy-density--clause-density space.
Notes of the lectures delivered in Les Houches during the Summer School on Complex Systems (July 2006).
In a recent milestone experiment, Googles processor Sycamore heralded the era of quantum supremacy by sampling from the output of (pseudo-)random circuits. We show that such random circuits provide tailor-made building blocks for simulating quantum m
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function
We study network configurations that provide optimal robustness to random breakdowns for networks with a given number of nodes $N$ and a given cost--which we take as the average number of connections per node $kav$. We find that the network design th
We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the pe