ﻻ يوجد ملخص باللغة العربية
Recently the AMS-02 experiment has released the data of positron fraction with much small statistical error. Because of the small error, it is no longer easy to fit the data with a single dark matter for a fixed diffusion model and dark matter profile. In this paper, we propose a new interpretation of the data that it originates from decay of two dark matter. This interpretation gives a rough threshold of the lighter DM component. When DM decays into leptons, the positron fraction in the cosmic ray depends on the flavor of the final states, and this is fixed by imposing non-Abelian discrete symmetry in our model. By assuming two gauge-singlet fermionic decaying DM particles, we show that a model with non-Abelian discrete flavor symmetry, e.g. $T_{13}$, can give a much better fitting to the AMS-02 data compared with single dark matter scenario. Few dimension six operators of universal leptonic decay of DM particles are allowed in our model since its decay operators are constrained by the $T_{13}$ symmetry. We also show that the lepton masses and mixings are consistent with current experimental data, due to the flavor symmetry.
We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the A
The AMS-02 collaboration has recently released data on the positron fraction $e^+/(e^-+e^+)$ up to energies of about 350 GeV. If one insists on interpreting the observed excess as a dark matter signal, then we find it is best described by a TeV-scale
We study a new flavor symmetric model with non-Abelian discrete symmetry T_{13}. The T_{13} group is isomorphic to Z_{13} rtimes Z_3, and it is the minimal group having two complex triplets as the irreducible representations. We show that the T_{13}
We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discret
We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter