ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclination and relativistic effects in the outburst evolution of black hole transients

128   0   0.0 ( 0 )
 نشر من قبل Teodoro Mu\\~noz-Darias
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Mu~noz-Darias




اسأل ChatGPT حول البحث

We have systematically studied the effect of the orbital inclination in the outburst evolution of black hole transients. We have included all the systems observed by the Rossi X-ray timing explorer in which the thermal, accretion disc component becomes strongly dominant at some point of the outburst. Inclination is found to modify the shape of the tracks that these systems display in the colour/luminosity diagrams traditionally used for their study. Black hole transients seen at low inclination reach softer spectra and their accretion discs look cooler than those observed closer to edge-on. This difference can be naturally explained by considering inclination dependent relativistic effects on accretion discs.



قيم البحث

اقرأ أيضاً

Galactic black-hole X-ray binaries (BHBs) emit a compact, optically thick, mildly relativistic radio jet when they are in the hard and hard-intermediate states. In these states, BHBs exhibit a correlation between the time lag of hard photons with res pect to softer ones and the photon index of the power law component that characterizes the X-ray spectral continuum above $sim$ 10 keV. The correlation, however, shows large scatter. Our objective is to investigate the role that the inclination of the system plays on the correlation between the time lag and the photon index. We find that the correlation between the time lag and the photon index is tight in low-inclination systems and becomes weaker in high-inclination systems. The amplitude of the lags is also larger at low and intermediate inclination angles than at high inclination. Our jet model that reproduces the process of Comptonization in an extended jet can account for the observations remarkably well.
Compact, steady jets are observed in the near infrared and radio bands in the hard state of Galactic black hole transients as their luminosity decreases and the source moves towards a quiescent state. Recent radio observations indicate that the jets turn off completely in the soft state, therefore multiwavelength monitoring of black hole transients are essential to probe the formation of jets. In this work we conducted a systematic study of all black hole transients with near infrared and radio coverage during their outburst decays. We characterized the timescales of changes in X-ray spectral and temporal properties and also in near infrared and/or in radio emission. We confirmed that state transitions occur in black hole transients at a very similar fraction of their respective Eddington luminosities. We also found that the near infrared flux increase that could be due to the formation of a compact jet is delayed by a time period of days with respect to the formation of a corona. Finally, we found a threshold disk Eddington luminosity fraction for the compact jets to form. We explain these results with a model such that the increase in the near infrared flux corresponds to a transition from a patchy, small scale height corona along with an optically thin out flow to a large scale height corona that allows for collimation of a steady compact jet. We discuss the timescale of jet formation in terms of transport of magnetic fields from the outer parts of the disk, and also consider two alternative explanations for the multiwavelength emission: hot inner accretion flows and irradiation.
552 - Tomaso M. Belloni 2011
Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associat ed with their bright outbursts. This has led to the definition of a small number of spectral/timing states which are separated by marked transitions in observables. The association of these states and their transitions to changes in the radio emission from relativistic radio jets completes the picture and have led to the study of the connection between accretion and ejection. A good number of fundamental questions are still unanswered, but the existing picture provides a good framework on which to base theoretical studies. We discuss the current observational standpoint, with emphasis onto the spectral and timing evolution during outbursts, as well as the prospects for future missions such as ASTROSAT (2012) and LOFT (>2020 if selected).
We investigated the relation between compact jet emission and X-ray variability properties of all black hole transients with multiwavelength coverage during their outburst decays. We studied the evolution of all power spectral components (including l ow frequency quasi-periodic oscillations), and related this evolution to changes in jet properties tracked by radio and infrared observations. We grouped sources according to their tracks in radio/X-ray luminosity relation, and show that the standards show stronger broadband X-ray variability than outliers at a given X-ray luminosity when the compact jet turned on. This trend is consistent with the internal shock model and can be important for the understanding of the presence of tracks in the radio/X-ray luminosity relation. We also observed that the total and the QPO rms amplitudes increase together during the earlier part of the outburst decay, but after the compact jet turns either the QPO disappears or its rms amplitude decreases significantly while the total rms amplitudes remain high. We discuss these results with a scenario including a variable corona and a non-variable disk with a mechanism for the QPO separate from the mechanism that create broad components. Finally, we evaluated the timing predictions of the magnetically dominated accretion flow model which can explain the presence of tracks in the radio/X-ray luminosity relation.
We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during no rmal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a good opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasi-periodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا