ﻻ يوجد ملخص باللغة العربية
Using flow equations, equilibrium and non-equilibrium dynamics of a two-level system are investigated, which couples via non-commuting components to two independent oscillator baths. In equilibrium the two-level energy splitting is protected when the TLS is coupled symmetrically to both bath. A critical asymmetry angle separates the localized from the delocalized phase. On the other hand, real-time decoherence of a non-equilibrium initial state is for a generic initial state faster for a coupling to two baths than for a single bath.
Hybrid photonic-plasmonic nanostructures allow one to engineer coupling of quantum emitters and cavity modes accounting for the direct coherent and environment mediated dissipative pathways. Using generalized plasmonic Dicke model, we explore the non
We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge suscep
We study the dynamics of a nanomechanical resonator (NMR) subject to a measurement by a low transparency quantum point contact (QPC) or tunnel junction in the non-Markovian domain. We derive the non-Markovian number-resolved (conditional) and uncondi
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demons intricate action consists of measuring individual particles and subsequently performi
The recent development of hybrid cQED allows one to study how cavity photons interact with a system driven out of equilibrium by fermionic reservoirs. We study here one of the simplest combination : a double quantum dot coupled to a single mode of th