ترغب بنشر مسار تعليمي؟ اضغط هنا

Three dimensional geometries and the analysis of H II regions

123   0   0.0 ( 0 )
 نشر من قبل Kenneth Wood
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare emission line intensities from photoionization models of smooth and fractal shell geometries for low density H II regions, with particular focus on the low-ionization diagnostic diagram [N II]/H-alpha vs H-alpha. Building on previously published models and observations of Barnards Loop, we show that the observed range of intensities and variations in the line intensity ratios may be reproduced with a three dimensional shell geometry. Our models adopt solar abundances throughout the model nebula, in contrast with previous one dimensional modeling which suggested the variations in line intensity ratios could only be reproduced if the heavy element abundances were increased by a factor of 1.4. For spatially resolved H II regions, the multiple sightlines that pierce and sample different ionization and temperature conditions within smooth and fractal shells produce a range of line intensities that are easily overlooked if only the total integrated intensities from the entire nebula model are computed. Our conclusion is that inference of H II region properties, such as elemental abundances, via photoionization models of one dimensional geometries must be treated with caution and further tested through three dimensional modeling.



قيم البحث

اقرأ أيضاً

181 - Janet P. Simpson 2021
Sgr B1 is a luminous H II region in the Galactic Center immediately next to the massive star-forming giant molecular cloud Sgr B2 and apparently connected to it from their similar radial velocities. In 2018 we showed from SOFIA FIFI-LS observations o f the [O III] 52 and 88 micron lines that there is no central exciting star cluster and that the ionizing stars must be widely spread throughout the region. Here we present SOFIA FIFI-LS observations of the [O I] 146 and [C II] 158 micron lines formed in the surrounding photodissociation regions (PDRs). We find that these lines correlate neither with each other nor with the [O III] lines although together they correlate better with the 70 micron Herschel PACS images from Hi-GAL. We infer from this that Sgr B1 consists of a number of smaller H II regions plus their associated PDRs, some seen face-on and the others seen more or less edge-on. We used the PDR Toolbox to estimate densities and the far-ultraviolet intensities exciting the PDRs. Using models computed with Cloudy, we demonstrate possible appearances of edge-on PDRs and show that the density difference between the PDR densities and the electron densities estimated from the [O III] line ratios is incompatible with pressure equilibrium unless there is a substantial pressure contribution from either turbulence or magnetic field or both. We likewise conclude that the hot stars exciting Sgr B1 are widely spaced throughout the region at substantial distances from the gas with no evidence of current massive star formation.
Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne$^{++}$, Ne$^+$) and sulphur (S$^{3+}$, S$^{++}$), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne$^+$/Ne$^{++}$ and S$^{3+}$/S$^{++}$. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2$pm$0.8). This value is in contrast to Asplund et al.s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.
We compare the accuracy of various methods for determining the transfer of the diffuse Lyman continuum in HII regions, by comparing them with a high-resolution discrete-ordinate integration. We use these results to suggest how, in multidimensional dy namical simulations, the diffuse field may be treated with acceptable accuracy without requiring detailed transport solutions. The angular distribution of the diffuse field derived from the numerical integration provides insight into the likely effects of the diffuse field for various material distributions.
An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF thread ed by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number $mathcal{M}_{rm M2} leq 1$. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor $alpha$ by a factor of $1+1/(2beta_1)$ compared to the unmagnetized case, with $beta_1$ denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed, and approximately to $alpha^{1/2}$. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when $mathcal{M}_{rm M2}^2 < 2/(beta_1 - 1)$. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.
We conducted VLA C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H II regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity re ached 45 uJypb. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature, 367 of them were detected. Absolute positions have nominal uncertainties of 0.3 arcsec. In this first paper on the data analysis, we present three catalogs, the first gives information on the strongest feature of 367 methanol maser sources, and the second on all detected maser spots. The third catalog present derived data of the 279 radio continuum sources found in the vicinity of maser sources. Among them, 140 show evidence of physical association with maser sources. Our catalogs list properties including distance, flux density, radial velocity and the distribution of masers on the Galactic plane is then provided as well. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا