ﻻ يوجد ملخص باللغة العربية
We point out an earlier unnoticed implication of quantum indistinguishability, namely, a property which we call `dualism that characterizes the entanglement of two identical particles (say, two ions of the same species) -- a feature which is absent in the entanglement of two non-identical particles (say, two ions of different species). A crucial application of this property is that it can be used to test quantum indistinguishability without bringing the relevant particles together, thereby avoiding the effects of mutual interaction. This is in contrast to the existing tests of quantum indistinguishability. Such a scheme, being independent of the nature and strength of mutual interactions of the identical particles involved, has potential applications, including the probing of the transition from quantum indistinguishability to classical distinguishability.
Photonic quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled pho
The paper reports on experimental diagnostics of entanglement swapping protocol by means of collective entanglement witness. Our approach is suitable to detect disturbances occurring in the preparation of quantum states, quantum communication channel
Two photon-pair creation processes can be arranged such that the paths of the emitted photons are identical. Thereby the path information is not erased but is never born in the first place. In addition to its implications for fundamental physics, thi
We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit
Hyper-hybrid entanglement for two indistinguishable bosons has been recently proposed by Li textit{et al.} [Y. Li, M. Gessner, W. Li, and A. Smerzi, href{https://doi.org/10.1103/PhysRevLett.120.050404}{Phys. Rev. Lett. 120, 050404 (2018)}]. In the cu