ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-trapping threshold in disordered nonlinear photonic lattices

189   0   0.0 ( 0 )
 نشر من قبل Uta Naether
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate numerically and experimentally the influence of coupling disorder on the self-trapping dynamics in nonlinear one-dimensional optical waveguide arrays. The existence of a lower and upper bound of the effective average propagation constant allows for a generalized definition of the threshold power for the onset of soliton localization. When compared to perfectly ordered systems, this threshold is found to decrease in the presence of coupling disorder.



قيم البحث

اقرأ أيضاً

We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the propert ies, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
In disordered two dimensional Chern insulators, a single bulk extended mode is predicted to exist per band, up to a critical disorder strength; all the other bulk modes are localized. This behavior contrasts strongly with topologically trivial two-di mensional phases, whose modes all become localized in the presence of disorder. Using a tight-binding model of a realistic photonic Chern insulator, we show that delocalized bulk eigenstates can be observed in an experimentally realistic setting. This requires the selective use of resonator losses to suppress topological edge states, and acquiring sufficiently large ensemble sizes using variable resonator detunings.
We demonstrate dynamical topological phase transitions in evolving Su-Schrieffer-Heeger (SSH) lattices made of interacting soliton arrays, which are entirely driven by nonlinearity and thereby exemplify emergent nonlinear topological phenomena. The p hase transitions occur from topologically trivial-to-nontrivial phase in periodic succession with crossovers from topologically nontrivial-to-trivial regime. The signature of phase transition is gap-closing and re-opening point, where two extended states are pulled from the bands into the gap to become localized topological edge states. Crossovers occur via decoupling of the edge states from the bulk of the lattice.
We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study t he generation of the discrete vortices from a broad class of singular beams.
We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder configurations is simply achieved by considering one random disorder configuration for each individual trajectory. As a first application, we exploit the present method to the study the role of disorder on the physics of the driven-dissipative Bose-Hubbard model in two different regimes: (i) for strong interactions, we explore the dissipative physics of fermionized bosons in disordered one-dimensional chains; (ii) for weak interactions, we investigate the role of on-site inhomogeneities on a first-order dissipative phase transition in a two-dimensional square lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا