ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph

161   0   0.0 ( 0 )
 نشر من قبل Christian Delacroix
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared remain nowadays largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of ~16% (3.5-4.1 mu m). Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench. A broadband raw null depth of 2 x 10^{-3} was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 x 10^{-5} (10.5 mag) at 2lambda/D. This result is fully in line with our projections based on rigorous coupled wave analysis modeling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated. After years of technological developments, mid-infrared vector vortex coronagraphs finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.



قيم البحث

اقرأ أيضاً

In recent years, phase mask coronagraphy has become increasingly efficient in imaging the close environment of stars, enabling the search for exoplanets and circumstellar disks. Coronagraphs are ideally suited instruments, characterized by high dynam ic range imaging capabilities, while preserving a small inner working angle. The AGPM (Annular Groove Phase Mask, Mawet et al. 2005) consists of a vector vortex induced by a rotationally symmetric subwavelength grating. This technique constitutes an almost unique solution to the achromatization at longer wavelengths (mid-infrared). For this reason, we have specially conceived a mid-infrared AGPM coronagraph for the forthcoming upgrade of VISIR, the mid-IR imager and spectrograph on the VLT at ESO (Paranal), in collaboration with members of the VISIR consortium. The implementation phase of the VISIR Upgrade Project is foreseen for May-August 2012, and the AGPM installed will cover the 11-13.2 {mu}m spectral range. In this paper, we present the entire fabrication process of our AGPM imprinted on a diamond substrate. Diamond is an ideal material for mid-infrared wavelengths owing to its high transparency, small dispersion, extremely low thermal expansion and outstanding mechanical and chemical properties. The design process has been performed with an algorithm based on the rigorous coupled wave analysis (RCWA), and the micro-fabrication has been carried out using nano-imprint lithography and reactive ion etching. A precise grating profile metrology has also been conducted using cleaving techniques. Finally, we show the deposit of fiducials (i.e. centering marks) with Aerosol Jet Printing (AJP). We conclude with the ultimate coronagraph expected performances.
High contrast imaging is the primary path to the direct detection and characterization of Earth-like planets around solar-type stars; a cleverly designed internal coronagraph suppresses the light from the star, revealing the elusive circumstellar com panions. However, future large-aperture telescopes ($>$4~m in diameter) will likely have segmented primary mirrors, which causes additional diffraction of unwanted stellar light. Here we present the first high contrast laboratory demonstration of an apodized vortex coronagraph (AVC), in which an apodizer is placed upstream of a vortex focal plane mask to improve its performance with a segmented aperture. The gray-scale apodization is numerically optimized to yield a better sensitivity to faint companions assuming an aperture shape similar to the LUVOIR-B concept. Using wavefront sensing and control over a one-sided dark hole, we achieve a raw contrast of $2times10^{-8}$ in monochromatic light at 775~nm, and a raw contrast of $4times10^{-8}$ in a 10% bandwidth. These results open the path to a new family of coronagraph designs, optimally suited for next-generation segmented space telescopes.
For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
The vector vortex coronagraph is an instrument designed for direct detection and spectroscopy of exoplanets over a broad spectral range. Our team is working towards demonstrating contrast performance commensurate with imaging temperate, terrestrial p lanets orbiting solar-type stars using the High Contrast Imaging Testbed facility at NASAs Jet Propulsion Laboratory. To date, the best broadband performance achieved is $sim$10$^{-8}$ raw contrast over a bandwidth of $Deltalambda/lambda$=10% in the visible regime (central wavelengths of 550-750 nm), while monochromatic tests yield much deeper contrast ($sim$10$^{-9}$ or better). In this study, we analyze the main performance limitations on the testbeds so far, focusing on the quality of the focal plane mask manufacturing. We measure the polarization properties of the masks and the residual electric field in the dark hole as a function of wavelength. Our results suggest that the current performance is limited by localized defects in the in the focal plane masks. A new generation of masks is under test that have fewer defects and promise performance improvements.
80 - A.-L. Maire , E. Huby , O. Absil 2020
Vortex coronagraphs have been shown to be a promising avenue for high-contrast imaging in the close-in environment of stars at thermal infrared (IR) wavelengths. They are included in the baseline design of METIS. To ensure good performance of these c oronagraphs, a precise control of the centering of the star image in real time is needed. We previously developed and validated the quadrant analysis of coronagraphic images for tip-tilt sensing estimator (QACITS) pointing estimator to address this issue. While this approach is not wavelength-dependent in theory, it was never implemented for mid-IR observations, which leads to specific challenges and limitations. Here, we present the design of the mid-IR vortex coronagraph for the new Earths in the $alpha$ Cen Region (NEAR) experiment with the VLT/VISIR instrument and assess the performance of the QACITS estimator for the centering control of the star image onto the vortex coronagraph. We use simulated data and on-sky data obtained with VLT/VISIR, which was recently upgraded for observations assisted by adaptive optics in the context of the NEAR experiment. We demonstrate that the QACITS-based correction loop is able to control the centering of the star image onto the NEAR vortex coronagraph with a stability down to $0.015 lambda/D$ rms over 4h in good conditions. These results show that QACITS is a robust approach for precisely controlling in real time the centering of vortex coronagraphs for mid-IR observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا