ﻻ يوجد ملخص باللغة العربية
We use numerical modeling to study the features of parametric (quasi-Cherenkov) cooperative radiation arising when an electron bunch passes through a crystal (natural or artificial) under the conditions of dynamical diffraction of electromagnetic waves in the presence of shot noise. It is shown that in both Laue and Bragg diffraction cases, parametric radiation consists of two strong pulses: one emitted at small angles with respect to the particle velocity direction and the other emitted at large angles to it. Under Bragg diffraction conditions, the intensity of parametric radiation emitted at small angles to the particle velocity direction reaches saturation at sufficiently smaller number of particles than the intensity of parametric radiation emitted at large angles. Under Laue diffraction conditions, every pulse contains two strong peaks, which are associated with the emission of electromagnetic waves at the front and back ends of the bunch. The presence of noise causes a chaotic signal in the interval between the two peaks.
Numerous applications of M{o}ssbauer spectroscopy are related to a unique resolution of absorption spectra of resonant radiation in crystals, when the nucleus absorbs a photon without a recoil. However, the narrow nuclear linewidth renders efficient
In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavitie
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to t
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic
We propose a new type of axisymmetric dielectric target which effectively concentrates Cherenkov radiation (CR) generated in the bulk of the material into a small vicinity of focus point. It can be called the axicon-based concentrator for CR. A theor