ﻻ يوجد ملخص باللغة العربية
We prove a quantum query lower bound Omega(n^{(d+1)/(d+2)}) for the problem of deciding whether an input string of size n contains a k-tuple which belongs to a fixed orthogonal array on k factors of strength d<=k-1 and index 1, provided that the alphabet size is sufficiently large. Our lower bound is tight when d=k-1. The orthogonal array problem includes the following problems as special cases: k-sum problem with d=k-1, k-distinctness problem with d=1, k-pattern problem with d=0, (d-1)-degree problem with 1<=d<=k-1, unordered search with d=0 and k=1, and graph collision with d=0 and k=2.
We show that an improvement to the best known quantum lower bound for GRAPH-COLLISION problem implies an improvement to the best known lower bound for TRIANGLE problem in the quantum query complexity model. In GRAPH-COLLISION we are given free access
The Index Erasure problem asks a quantum computer to prepare a uniform superposition over the image of an injective function given by an oracle. We prove a tight $Omega(sqrt{n})$ lower bound on the quantum query complexity of the non-coherent case of
The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of (1/pi) ln n + Theta(1). Here, we find the exact va
We investigate query-to-communication lifting theorems for models related to the quantum adversary bounds. Our results are as follows: 1. We show that the classical adversary bound lifts to a lower bound on randomized communication complexity with
Given two strings $S$ and $P$, the Episode Matching problem is to compute the length of the shortest substring of $S$ that contains $P$ as a subsequence. The best known upper bound for this problem is $tilde O(nm)$ by Das et al. (1997), where $n,m$ a