ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure Finding in Cosmological Simulations: The State of Affairs

57   0   0.0 ( 0 )
 نشر من قبل Alexander Knebe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ever increasing size and complexity of data coming from simulations of cosmic structure formation demands equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the halo finder comparison project: we investigate in detail the (possible) origin of any deviations across finders. To this extent we decipher and discuss differences in halo finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass, and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and -- to a minor extent -- the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing, and observables in general.

قيم البحث

اقرأ أيضاً

69 - Debora Sijacki , 2009
We employ cosmological hydrodynamical simulations to study the growth of massive black holes (BHs) at high redshifts subject to BH merger recoils from gravitational wave emission. We select the most massive dark matter halo at z=6 from the Millennium simulation, and resimulate its formation at much higher resolution including gas physics and a model for BH seeding, growth and feedback. Assuming that the initial BH seeds are relatively massive, of the order of 10^5 Msun, and that seeding occurs around z~15 in dark matter haloes of mass 10^9-10^10 Msun, we find that it is possible to build up supermassive BHs (SMBHs) by z=6 that assemble most of their mass during extended Eddington-limited accretion periods. The properties of the simulated SMBHs are consistent with observations of z=6 quasars in terms of the estimated BH masses and bolometric luminosities, the amount of star formation occurring within the host halo, and the presence of highly enriched gas in the innermost regions of the host galaxy. After a peak in the BH accretion rate at z=6, the most massive BH has become sufficiently massive for the growth to enter into a much slower phase of feedback-regulated accretion. We explore the full range of expected recoils and radiative efficiencies, and also consider models with spinning BHs. In the most `pessimistic case where BH spins are initially high, we find that the growth of the SMBHs can be potentially hampered if they grow mostly in isolation and experience only a small number of mergers. Whereas BH kicks can expel a substantial fraction of low mass BHs, they do not significantly affect the build up of the SMBHs. On the contrary, a large number of BH mergers has beneficial consequences for the growth of the SMBHs by considerably reducing their spin. [Abridged]
142 - I. Marini , A. Saro , S. Borgani 2020
Cosmological N-body simulations represent an excellent tool to study the formation and evolution of dark matter (DM) halos and the mechanisms that have originated the universal profile at the largest mass scales in the Universe. In particular, the co mbination of the velocity dispersion $sigma_mathrm{v}$ with the density $rho$ can be used to define the pseudo-entropy $S(r)=sigma_mathrm{v}^2/rho^{,2/3}$, whose profile is well-described by a simple power-law $Spropto,r^{,alpha}$. We analyze a set of cosmological hydrodynamical re-simulations of massive galaxy clusters and study the pseudo-entropy profiles as traced by different collisionless components in simulated galaxy clusters: DM, stars, and substructures. We analyze four sets of simulations, exploring different resolution and physics (N-body and full hydrodynamical simulations) to investigate convergence and the impact of baryons. We find that baryons significantly affect the inner region of pseudo-entropy profiles as traced by substructures, while DM particles profiles are characterized by an almost universal behavior, thus suggesting that the level of pseudo-entropy could represent a potential low-scatter mass-proxy. We compare observed and simulated pseudo-entropy profiles and find good agreement in both normalization and slope. We demonstrate, however, that the method used to derive observed pseudo-entropy profiles could introduce biases and underestimate the impact of mergers. Finally, we investigate the pseudo-entropy traced by the stars focusing our interest in the dynamical distinction between intracluster light (ICL) and the stars bound to the brightest cluster galaxy (BCG): the combination of these two pseudo-entropy profiles is well-described by a single power-law out to almost the entire cluster virial radius.
57 - Xi Meng , Oleg Gnedin , Hui Li 2018
We investigate the structure of galaxies formed in a suite of high-resolution cosmological simulations. Consistent with observations of high-redshift galaxies, our simulated galaxies show irregular, prolate shapes with thick stellar disks, which are dominated by turbulent motions instead of rotation. Yet molecular gas and young stars are restricted to relatively thin disks. We examine the accuracy of applying the Toomre linear stability analysis to predict the location and amount of gas available for star formation. We find that the Toomre criterion still works for these irregular galaxies, after correcting for multiple gas and stellar components: the $Q$ parameter in $rm{H_2}$ rich regions is in the range $0.5-1$, remarkably close to unity. Due to the violent stellar feedback from supernovae and strong turbulent motions, young stars and molecular gas are not always spatially associated. Neither the $Q$ map nor the $rm{H_2}$ surface density map coincide with recent star formation exactly. We argue that the Toomre criterion is a better indicator of future star formation than a single $rm{H_2}$ surface density threshold because of the smaller dynamic range of $Q$. The depletion time of molecular gas is below 1~Gyr on kpc scale, but with large scatter. Centering the aperture on density peaks of gas/young stars systematically biases the depletion time to larger/smaller values and increases the scatter.
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, a s could be expected for a system where the spheroid strongly influences the evolution. The second bar is less strong, shorter, and formed in a galaxy with no significant bulge component. We study the strength and length of the bars, the stellar density profiles along and across the bars and the velocity fields in the bar region. We compare them with the results of dynamical (idealised) simulations and with observations, and find, in general, a good agreement, although we detect some important differences as well. Our results show that more or less realistic bars can form naturally in a $Lambda$CDM cosmology, and open up the possibility to study the bar formation process in a more consistent way than previously done, since the host galaxies grow, accrete matter and significantly evolve during the formation and evolution of the bar.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا