ترغب بنشر مسار تعليمي؟ اضغط هنا

The metallicity - redshift relations for emission-line SDSS galaxies: examination of the dependence on the star formation rate

292   0   0.0 ( 0 )
 نشر من قبل Leonid Pilyugin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.S.Pilyugin




اسأل ChatGPT حول البحث

We analyse the oxygen abundance and specific star formation rates (sSFR) variations with redshift in star-forming SDSS galaxies of different masses. We find that the maximum value of the sSFR, sSFRmax, decreases when the stellar mass, Ms, of a galaxy increases, and decreases with decreasing of redshift. The sSFRmax can exceed the time-averaged sSFR by about an order of magnitude for massive galaxies. The metallicity - redshift relations for subsamples of galaxies with sSFR = sSFRmax and with sSFR = 0.1sSFRmax coincide for massive (log(Ms/Mo) > 10.5, with stellar mass Ms in solar units) galaxies and differ for low-mass galaxies. This suggests that there is no correlation between oxygen abundance and sSFR in massive galaxies and that the oxygen abundance correlates with the sSFR in low-mass galaxies. We find evidence in favour of that the irregular galaxies show, on average, higher sSFR and lower oxygen abundances than the spiral galaxies of similar masses and that the mass - metallicity relation for spiral galaxies differs slightly from that for irregular galaxies. The fact that our sample of low-mass galaxies is the mixture of spiral and irregular galaxies can be responsible for the dependence of the metallicity - redshift relation on the sSFR observed for the low-mass SDSS galaxies. The mass - metallicity and luminosity - metallicity relations obtained for irregular SDSS galaxies agree with corresponding relations for nearby irregular galaxies with direct abundance determinations. We find that the aperture effect does not make a significant contribution to the redshift variation of oxygen abundances in SDSS galaxies.



قيم البحث

اقرأ أيضاً

We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2- 3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly $sim$3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature ($sigma_{Delta{rm log(O/H)}}=$0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the $sim$3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.
We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate, and dust content of star-forming galaxies at z$sim$1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity rela tion at $zsim1.6$ is steeper than the relation observed in the local Universe. The steeper MZ relation at $zsim1.6$ is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at $zsim1.6$. The most massive galaxies at $zsim1.6$ ($sim 10^{11}M_odot$) are enriched to the level observed in massive galaxies in the local Universe. The mass-metallicity relation we measure at $zsim1.6$ supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and star formation rate for galaxies at a fixed stellar mass at $zsim1.6$ which is similar to trends observed in the local Universe. We do not find a relation between stellar mass, metallicity and star formation rate that is independent of redshift; our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity and dust extinction. We find that at a fixed stellar mass dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs and dust extinctions we conclude that stellar mass is most closely related to dust extinction.
Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{text{SFR}}$) as well as HI-gas mass (FMR$_{text{HI}}$). We combine our IFU data w ith a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{text{SFR}}$ and FMR$_{text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$sigma$ mean scatter in the MZR to be 0.05 dex. The 1$sigma$ mean scatter in the FMR$_{text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{text{HI}}$. We also find that the FMR$_{text{HI}}$ is consistent between the IFU observed dwarf galaxies and the ALFALFA/SDSS crossmatched sample. We introduce the fundamental metallicity luminosity counterpart to the FMR, again characterized in terms of SFR (FML$_{text{SFR}}$) and HI-gas mass (FML$_{text{HI}}$). We find that the FML$_{text{HI}}$ relation is consistent between the IFU observed dwarf galaxy sample and the larger ALFALFA/SDSS sample. However the 1$sigma$ scatter for the FML$_{text{HI}}$ relation is not improved over the FMR$_{text{HI}}$ scenario. This leads us to conclude that the FMR$_{text{HI}}$ is the best candidate for a physically motivated fundamental metallicity relation.
We present 65 Sloan Digital Sky Survey (SDSS) spectra of 62 star-forming galaxies with oxygen abundances 12 + logO/H ~ 7.5-8.4. Redshifts of selected galaxies are in the range z~0.36-0.70. This allows us to detect the redshifted MgII 2797,2803 emissi on lines. Our aim is to use these lines for the magnesium abundance determination. The MgII emission was detected in ~2/3 of the galaxies. We find that the MgII 2797 emission-line intensity follows a trend with the excitation parameter x= O^{2+}/O that is similar to that predicted by CLOUDY photoionised HII region models, suggesting a nebular origin of MgII emission. The Mg/O abundance ratio is lower by a factor ~2 than the solar ratio. This is probably the combined effect of interstellar MgII absorption and depletion of Mg onto dust. However, the effect of dust depletion in selected galaxies, if present, is small, by a factor of ~2 lower than that of iron.
We present a sample of low-redshift (z<0.133) candidates for extremely low-metallicity star-forming galaxies with oxygen abundances 12+logO/H<7.4 selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Three methods are used to derive their oxygen abundances. Among these methods two are based on strong [OII]3727, [OIII]4959, and [OIII]5007 emission lines, which we call strong-line and semi-empirical methods. These were applied for all galaxies. We have developed one of these methods, the strong-line method, in this paper. This method is specifically focused on the accurate determination of metallicity in extremely low-metallicity galaxies and may not be used at higher metallicities with12+logO/H>7.5. The third, the direct Te method, was applied for galaxies with detected [OIII]4363 emission lines. All three methods give consistent abundances and can be used in combination or separately for selection of lowest-metallicity candidates. However, the strong-line method is preferable for spectra with a poorly detected or undetected [OIII]4363 emission line. In total, our list of selected candidates for extremely low-metallicity galaxies includes 66 objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا