ترغب بنشر مسار تعليمي؟ اضغط هنا

LOPES-3D, an antenna array for full signal detection of air-shower radio emission

248   0   0.0 ( 0 )
 نشر من قبل Daniel Huber
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To better understand the radio signal emitted by extensive air-showers and to further develop the radio detection technique of high-energy cosmic rays, the LOPES experiment was reconfigured to LOPES-3D. LOPES-3D is able to measure all three vectorial components of the electric field of radio emission from cosmic ray air showers. The additional measurement of the vertical component ought to increase the reconstruction accuracy of primary cosmic ray parameters like direction and energy, provides an improved sensitivity to inclined showers, and will help to validate simulation of the emission mechanisms in the atmosphere. LOPES-3D will evaluate the feasibility of vectorial measurements for large scale applications. In order to measure all three electric field components directly, a tailor-made antenna type (tripoles) was deployed. The change of the antenna type necessitated new pre-amplifiers and an overall recalibration. The reconfiguration and the recalibration procedure are presented and the operationality of LOPES-3D is demonstrated.



قيم البحث

اقرأ أيضاً

We observe a correlation between the slope of radio lateral distributions, and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer co-loca ted with the multi-detector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air-showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.
The Experimental complex NEVOD includes several different setups for studying various components of extensive air showers (EAS) in the energy range from 10^10 to 10^18 eV. The NEVOD-EAS array for detection of the EAS electron-photon component began i ts data taking in 2018. It is a distributed system of scintillation detectors installed over an area of about 10^4 m^2. A distinctive feature of this array is its cluster organization with different-altitude layout of the detecting elements. The main goal of the NEVOD-EAS array is to obtain an estimation of the primary particle energy for events measured by various detectors of the Experimental complex NEVOD. This paper describes the design, operation principles and data processing of the NEVOD-EAS array. The criteria for the event selection and the accuracy of the EAS parameters reconstruction obtained on the simulated events are discussed. The results of the preliminary analysis of experimental data obtained during a half-year operation are presented.
Digital radio arrays are widely used for the low-frequency radio astronomy as well as for detection of air-showers induced by high-energy cosmic rays and neutrinos. Since the radio emission from air-showers forms short broadband pulses with duration of tens nanoseconds, the data acquisition strategies of cosmic-ray and astronomical arrays have significant differences. To perform precise measurement of cosmic rays, the radio array should have absolute amplitude calibration and record the entire electric field on the antenna in the broad frequency range. These requirements are similar to ones defined for the experiments aimed at the detection of weak signal from neutral hydrogen at redshifts of $z$>10, what led us to the application of our experience with Tunka-Rex to this problem. We are developing new experimental setup comprising of four antenna stations, placed on the area of 100 sq.m. Each antenna station consists of two perpendicular loop antennas measuring electric field in the frequency band of 30-80 MHz. The setup records electric fields from all antennas in portions of 50 $mu$s reaching the spectral resolution of 20 kHz. We expect a flow of redundant data of about 10 GB/day, and plan to exploit this redundancy in order to decrease systematic uncertainty of the measurements by application of digital beam-forming, matched filtering and RFI suppression with neural networks. In the present contribution we describe the design and calibration of the setup, expected performance and data analysis techniques.
Air-shower radio arrays operate in low signal-to-noise ratio conditions, which complicates the autonomous measurement of air-shower signals without using an external trigger from optical or scintillator detectors. A simple threshold trigger for radio detector can be efficiently applied onlyin radio-quiet conditions, because for other cases this trigger detects a high fraction of noise pulses. In the present work, we study aspects of independent air-shower detection by dense antenna clusters with a complex real-time trigger system. For choosing the optimal procedures for the real-time analysis, we study the dependence between trigger efficiency, count rate, detector hardware and geometry. For this study, we develop a framework for testing various methods of signal detection and noise filtration for arrays with various specifications and the hardware implementation of these methods based on field programmable gate arrays. The framework provides flexible settings for the management of station-level and cluster-level steps of detecting the signal, optimized for the hardware implementation for real-time processing. It includes data-processing tools for the initialconfiguration and tests on pre-recorded data, tools for configuring the trigger architecture andtools for preliminary estimates of the trigger efficiency at given thresholds of cosmic-ray energyand air-shower pulse amplitude. We show examples of the trigger pipeline developed with this framework and discuss the results of tests on simulated data.
60 - Adam Nepomuk Otte 2018
We discuss the acceptance and sensitivity of a small air-shower imaging system to detect earth-skimming ultrahigh-energy tau neutrinos. The instrument we study is located on top of a mountain and has an azimuthal field of view of $360^circ$. We find that the acceptance and sensitivity of such a system is close to maximal if it is located about 2 km above ground, has a vertical field of view of $5^circ$, allows the reconstruction of an at least $0.3^circ$ long air-shower image, and features an effective light-collection area of $10$ m$^2$ in any direction. After three years of operation, an imaging system with these features achieves an all-flavor neutrino flux sensitivity of $5times10^{-9}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ at $2times10^8$ GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا