ترغب بنشر مسار تعليمي؟ اضغط هنا

The Zagier polynomials. Part II: Arithmetic properties of coefficients

204   0   0.0 ( 0 )
 نشر من قبل Christophe Vignat
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The modified Bernoulli numbers begin{equation*} B_{n}^{*} = sum_{r=0}^{n} binom{n+r}{2r} frac{B_{r}}{n+r}, quad n > 0 end{equation*} introduced by D. Zagier in 1998 were recently extended to the polynomial case by replacing $B_{r}$ by the Bernoulli polynomials $B_{r}(x)$. Arithmetic properties of the coefficients of these polynomials are established. In particular, the 2-adic valuation of the modified Bernoulli numbers is determined. A variety of analytic, umbral, and asymptotic methods is used to analyze these polynomials.



قيم البحث

اقرأ أيضاً

191 - Yichao Zhang 2013
In this note, we generalize the isomorphisms to the case when the discriminant form is not necessarily induced from real quadratic fields. In particular, this general setting includes all the subspaces with epsilon-conditions, only two spacial cases of which were treated before. With this established, we shall prove the Zagier duality for canonical bases. Finally, we raise a question on the integrality of the Fourier coefficients of these bases elements, or equivalently we concern the existence of a Miller-like basis for vector valued modular forms.
In this paper we study two functions $F(x)$ and $J(x)$, originally found by Herglotz in 1923 and later rediscovered and used by one of the authors in connection with the Kronecker limit formula for real quadratic fields. We discuss many interesting p roperties of these functions, including special values at rational or quadratic irrational arguments as rational linear combinations of dilogarithms and products of logarithms, functional equations coming from Hecke operators, and connections with Starks conjecture. We also discuss connections with 1-cocycles for the modular group $mathrm{PSL}(2,mathbb{Z})$.
Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G_1 under strong assumptions on the ramification in K. Yang later proved this con jecture under slightly stronger assumptions on the ramification. In recent work, Lauter and Viray proved a different formula for CM(K).G_1 for primitive quartic CM fields with a mild assumption, using a method of proof independent from that of Yang. In this paper we show that these two formulas agree, for a class of primitive quartic CM fields which is slightly larger than the intersection of the fields considered by Yang and Lauter and Viray. Furthermore, the proof that these formulas agree does not rely on the results of Yang or Lauter and Viray. As a consequence of our proof, we conclude that the Bruinier-Yang formula holds for a slightly largely class of quartic CM fields K than what was proved by Yang, since it agrees with the Lauter-Viray formula, which is proved in those cases. The factorization of these intersection numbers has applications to cryptography: precise formulas for them allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography.
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)_{ell} on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the de nominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for the intersection number (CM(K).G1)_{ell} under strong assumptions on the ramification of the primitive quartic CM field K. Yang later proved this conjecture assuming that O_K is freely generated by one element over the ring of integers of the real quadratic subfield. In this paper, we prove a formula for (CM(K).G1)_{ell} for more general primitive quartic CM fields, and we use a different method of proof than Yang. We prove a tight bound on this intersection number which holds for all primitive quartic CM fields. As a consequence, we obtain a formula for a multiple of the denominators of the Igusa class polynomials for an arbitrary primitive quartic CM field. Our proof entails studying the Embedding Problem posed by Goren and Lauter and counting solutions using our previous article that generalized work of Gross-Zagier and Dorman to arbitrary discriminants.
187 - Soohyun Park 2014
The generalized Fibonacci sequences are sequences ${f_n}$ which satisfy the recurrence $f_n(s, t) = sf_{n - 1}(s, t) + tf_{n - 2}(s, t)$ ($s, t in mathbb{Z}$) with initial conditions $f_0(s, t) = 0$ and $f_1(s, t) = 1$. In a recent paper, Amdeberhan, Chen, Moll, and Sagan considered some arithmetic properites of the generalized Fibonacci sequence. Specifically, they considered the behavior of analogues of the $p$-adic valuation and the Riemann zeta function. In this paper, we resolve some conjectures which they raised relating to these topics. We also consider the rank modulo $n$ in more depth and find an interpretation of the rank in terms of the order of an element in the multiplicative group of a finite field when $n$ is an odd prime. Finally, we study the distribution of the rank over different values of $s$ when $t = -1$ and suggest directions for further study involving the rank modulo prime powers of generalized Fibonacci sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا