ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the electronic nematic phase of Sr$_3$Ru$_2$O$_7$ with precise control of the applied magnetic field vector

227   0   0.0 ( 0 )
 نشر من قبل Jan Bruin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a study of the magnetoresistivity of high purity Sr$_3$Ru$_2$O$_7$, in the vicinity of its electronic nematic phase. By employing a triple-axis (9/1/1T) vector magnet, we were able to precisely tune both the magnitude and direction of the in-plane component of the magnetic field (H$_parallel$). We report the dependence of the resistively determined anisotropy on H$_parallel$ in the phase, as well as across the wider temperature-field region. Our measurements reveal a high-temperature anisotropy which mimics the behaviour of fluctuations from the underlying quantum critical point, and suggest the existence of a more complicated phase diagram than previously reported.



قيم البحث

اقرأ أيضاً

Ultra-clean crystals of Sr$_3$Ru$_2$O$_7$ undergo a metamagnetic transition at low temperatures. This transition shows a strong anisotropy in the applied field direction with the critical field $H_c$ ranging from $sim 5.1$T for $Hperp c$ to $sim 8$T for $Hparallel c$. In addition, studies on ultra-pure samples revealed a bifurcation of the metamagnetic line for fields in $c$-direction and it is argued that a nematic phase emerges between the magnetization jumps. The aim of this study is to explain the field-direction anisotropy of these phenomena. Based on a microscopic tight-binding model, we introduce the metamagnetic transition by means of a van Hove singularity scenario. We show that the rotation of the O-octahedra around the c-axis expected for this material introduces a staggered spin-orbit coupling within the planes and naturally leads to an anisotropy of the magnetic response. We describe the low-temperature phase as a nematic state favored by forward scattering processes. The spin-orbit coupling shows an influence on both, the critical field $H_c$ and the occurrence of the nematic phase.
149 - A. Putatunda , G. Qin , W. Ren 2020
We investigated Sr$_3$Ru$_2$O$_7$, a quantum critical metal that shows a metamagnetic quantum phase transition and electronic nematicity, through density functional calculations. These predict a ferromagnetic ground state in contrast to the experimen tally observed paramagnetism, raising the question of competing magnetic states and associated fluctuations that may suppress magnetic order. We did a search to identify such low energy antiferromagnetically ordered metastable states. We find that the lowest energy antiferromagnetic state has a striped order. This corresponds to the E-type order that has been shown to be induced by Mn alloying. We also note significant transport anisotropy in this E-type ordered state. These results are discussed in relation to experimental observations.
252 - M. Zhu , Y. Wang , P. G. Li 2018
We report the magnetic and electronic properties of the bilayer ruthenate Sr$_3$Ru$_2$O$_7$ upon Fe substitution for Ru. We find that Sr$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ shows a spin-glass-like phase below 4 K for $x$ = 0.01 and commensurate E-type ant iferromagnetically ordered insulating ground state characterized by the propagation vector $q_c$ = (0.25 0.25 0) for $x$ $geq$ 0.03, respectively, in contrast to the paramagnetic metallic state in the parent compound with strong spin fluctuations occurring at wave vectors $q$ = (0.09 0 0) and (0.25 0 0). The observed antiferromagnetic ordering is quasi-two-dimensional with very short correlation length along the $c$ axis, a feature similar to the Mn-doped Sr$_3$Ru$_2$O$_7$. Our results suggest that this ordered ground state is associated with the intrinsic magnetic instability in the pristine compound, which can be readily tipped by the local magnetic coupling between the 3$d$ orbitals of the magnetic dopants and Ru 4$d$ orbitals.
We investigate the evolution of magnetic excitations in Sr$_3$Ru$_2$O$_7$ using a three band tight binding model that takes into account the influence of Mn and Ti dopant ions. The effect of dopant ions on the Sr$_3$Ru$_2$O$_7$ band structure has bee n included by taking into account the dopant induced suppression of the oxygen octahedral rotation in the tight binding band structure and changes in electron occupation. We find that the low energy spin fluctuations are dominated by three wave vectors around Q=$((0,0),(pi/2,pi/2))$, and $(pi,0)$ which compete with each other. As the octahedral rotation is suppressed with increasing doping, the three wave vectors evolve differently. In particular, the undoped compound has dominant wavevectors at Q=$((0,0),(pi/2,pi/2))$, but doping Sr$_3$Ru$_2$O$_7$ leads to a significant enhancement in the spin susceptibility at the Q=$(pi,0)$ wavevector bringing the system closer to a magnetic instability. All the features calculated from our model are in agreement with neutron scattering experiments. We have also studied the effect of a c-axis Zeeman field on the low energy spin fluctuations. We find that an increasing magnetic field suppresses the AFM fluctuations and leads to stronger competition between the AFM and FM spin fluctuations. The magnetic field dependence observed in our calculations therefore supports the scenario that the observed nematic phase in the metamagnetic region in Sr$_3$Ru$_2$O$_7$ is intimately related to the presence of a competing ferromagnetic instability.
Strong spin-orbital coupling (SOC) was found previously to lead to dramatic effects in quantum materials, such as those found in topological insulators. It was shown theoretically that local noncentrosymmetricity resulting from the rotation of RuO$_6 $ octahedral in Sr$_3$Ru$_2$O$_7$ will also give rise to an effective SOCcite{SocSr327,MicroscopicnematicSr327}. In the presence of a magnetic field applied along a specific in-plane direction, the Fermi surface was predicted to undergo a reconstruction. Here we report results of our in-plane magnetoresistivity and magnetothermopower measurements on single crystals of Sr$_3$Ru$_2$O$_7$ with an electrical or a thermal current applied along specific crystalline directions and a magnetic field rotating in the $ab$ plane (Fig. 1a), showing a minimal value for field directions predicted by the local noncentrosymmetricity theory. Furthermore, the thermopower, and therefore, the electron entropy, were found to be suppressed as the field was applied perpendicular to the thermal current, which suggests that the spin and the momentum in Sr$_3$Ru$_2$O$_7$ are locked over substantial parts of the Fermi surface, likely originating from local noncentrosymmetricity as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا