ﻻ يوجد ملخص باللغة العربية
We report a study of the magnetoresistivity of high purity Sr$_3$Ru$_2$O$_7$, in the vicinity of its electronic nematic phase. By employing a triple-axis (9/1/1T) vector magnet, we were able to precisely tune both the magnitude and direction of the in-plane component of the magnetic field (H$_parallel$). We report the dependence of the resistively determined anisotropy on H$_parallel$ in the phase, as well as across the wider temperature-field region. Our measurements reveal a high-temperature anisotropy which mimics the behaviour of fluctuations from the underlying quantum critical point, and suggest the existence of a more complicated phase diagram than previously reported.
Ultra-clean crystals of Sr$_3$Ru$_2$O$_7$ undergo a metamagnetic transition at low temperatures. This transition shows a strong anisotropy in the applied field direction with the critical field $H_c$ ranging from $sim 5.1$T for $Hperp c$ to $sim 8$T
We investigated Sr$_3$Ru$_2$O$_7$, a quantum critical metal that shows a metamagnetic quantum phase transition and electronic nematicity, through density functional calculations. These predict a ferromagnetic ground state in contrast to the experimen
We report the magnetic and electronic properties of the bilayer ruthenate Sr$_3$Ru$_2$O$_7$ upon Fe substitution for Ru. We find that Sr$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ shows a spin-glass-like phase below 4 K for $x$ = 0.01 and commensurate E-type ant
We investigate the evolution of magnetic excitations in Sr$_3$Ru$_2$O$_7$ using a three band tight binding model that takes into account the influence of Mn and Ti dopant ions. The effect of dopant ions on the Sr$_3$Ru$_2$O$_7$ band structure has bee
Strong spin-orbital coupling (SOC) was found previously to lead to dramatic effects in quantum materials, such as those found in topological insulators. It was shown theoretically that local noncentrosymmetricity resulting from the rotation of RuO$_6