ﻻ يوجد ملخص باللغة العربية
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelarations. We show that the incorporation of rotational accelerations requires a class of emph{loop prolongations} of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-stablished framework for implementing symmetry transformations in quantum mechanics.
We show that the Wigner-Bargmann program of grounding non-relativistic quantum mechanics in the unitary projective representations of the Galilei group can be extended to include all non-inertial reference frames. The key concept is the emph{Galilean
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of t
Physics of non-inertial reference frames is a generalizing of Newtons laws to any reference frames. The first, Law of Kinematic in non-inertial reference frames reads: the kinematic state of a body free of forces conserves and determinates a constant
An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of su
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber