ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of an individual case of gravitational lensing of a $zsim8$ Lyman-Break galaxy (LBG) in a blank field, identified in Hubble Space Telescope imaging obtained as part of the Brightest of Reionizing Galaxies survey. To investigate the close proximity of the bright ($m_{AB}=25.8$) $Y_{098}$-dropout to a small group of foreground galaxies, we obtained deep spectroscopy of the dropout and two foreground galaxies using VLT/X-Shooter. We detect H-$alpha$, H-$beta$, [OIII] and [OII] emission in the brightest two foreground galaxies (unresolved at the natural seeing of $0.8$ arcsec), placing the pair at $z=1.327$. We can rule out emission lines contributing all of the observed broadband flux in $H_{160}$ band at $70sigma$, allowing us to exclude the $zsim8$ candidate as a low redshift interloper with broadband photometry dominated by strong emission lines. The foreground galaxy pair lies at the peak of the luminosity, redshift and separation distributions for deflectors of strongly lensed $zsim8$ objects, and we make a marginal detection of a demagnified secondary image in the deepest ($J_{125}$) filter. We show that the configuration can be accurately modelled by a singular isothermal ellipsoidal deflector and a S{e}rsic source magnified by a factor of $mu=4.3pm0.2$. The reconstructed source in the best-fitting model is consistent with luminosities and morphologies of $zsim8$ LBGs in the literature. The lens model yields a group mass of $9.62pm0.31times10^{11} M_{odot}$ and a stellar mass-to-light ratio for the brightest deflector galaxy of $M_{star}/L_{B}=2.3^{+0.8}_{-0.6} M_{odot}/L_{odot}$ within its effective radius. The foreground galaxies redshifts would make this one of the few strong lensing deflectors discovered at $z>1$.
Theoretical and numerical modeling of dark-matter halo assembly predicts that the most luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with HST observations acquired by our Brightest o
We describe the selection of a sample of photometrically-defined Lyman break galaxies (LBGs) at z~5 using the multi-wavelength imaging data of the ESO Remote Galaxy Survey (ERGS). The data is drawn from ten widely-separated fields covering a total sk
The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) enabled the search for the first galaxies observed at z ~ 8 - 11 (500 - 700 Myr after the Big Bang). To continue quantifying the number density of the most luminous galaxies (M_AB ~ -
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protoc
Until now, investigating the early stages of galaxy formation has been primarily the realm of theoretical modeling and computer simulations, which require many physical ingredients and are challenging to test observationally. However, the latest Hubb