ترغب بنشر مسار تعليمي؟ اضغط هنا

What do fractals learn us concerning the masses of fundamental particles, of hadrons, and of nuclei? Concerning also disintegration life-times?

186   0   0.0 ( 0 )
 نشر من قبل Boris Tatischeff
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Boris Tatischeff




اسأل ChatGPT حول البحث

The hadron spectroscopy is studied through the use of fractals and discrete scale invariance (DSI) implying log-periodic corrections to continuous scaling. The masses of mesons and baryons, reported by the Particle Data Group (PDG), agree with (DSI), as well as the masses of exotic narrow mesons, baryons, and dibaryons. Two distributions are systematically studied: first the log of the masses versus the log of their rank, and also the successive mass ratios. Each fitted parameter of the second distributions, as a function of the hadronic masses, displays the same shape for all PDG hadronic families and species. The same parameters allow good fits for the narrow exotic mesons, baryons and dibaryons. When the successive mass ratios between different baryon families are constant, this property is not observed between different meson families. Such observation is studied within the double mass ratios eliminating the quark masses, but the difference between baryons and mesons is not understood. The fractal properties and discrete scale invariance model are also used to study nuclei yrast masses as well as excited nuclei level masses of some nuclei. Here also the good agreement between data and fractal property, allows to make some predictions for still unobserved nuclei masses. Fractal properties are also compared to several nuclei data such as : - atomic masses in several columns of the Mendeleev periodic table of elements, - masses of series following $beta^{+}$ or $beta^{-}$ disintegrations, - one and two nucleon separation energies, - half-lives of some isotopes, - the four radioactive family periods. Finally, it is shown that the lepton, hadron, and boson masses can be presented in the same frame. This is also partially true for the coupling constants.

قيم البحث

اقرأ أيضاً

The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function, and the stability and the potential longevity of extragalactic young to intermediate-age massive star cluster s. Here, we explore the pitfalls associated with this approach and its potential for use with Galactic open clusters. We conclude that for an open cluster to survive for any significant fraction of a Hubble time (in the absence of substantial external perturbations), it is a necessary but not a sufficient condition to be located close to the predicted photometric evolutionary sequences for normal simple stellar populations.
59 - Richard P. Brent 2021
A recent paper by Agelas [Generalized Riemann Hypothesis, 2019, hal-00747680v3] claims to prove the Generalized Riemann Hypothesis (GRH) and, as a special case, the Riemann Hypothesis (RH). We show that the proof given by Agelas contains an error. In particular, Lemma 2.3 of Agelas is false. This Lemma 2.3 is a generalisation of Theorem 1 of Vassilev-Missana [A note on prime zeta function and Riemann zeta function, Notes on Number Theory and Discrete Mathematics, 22, 4 (2016), 12-15]. We show by several independent methods that Theorem 1 of Vassilev-Missana is false. We also show that Theorem 2 of Vassilev-Missana is false. This note has two aims. The first aim is to alert other researchers to these errors so they do not rely on faulty results in their own work. The second aim is pedagogical - we hope to show how these errors could have been detected earlier, which may suggest how similar errors can be avoided, or at least detected at an early stage.
Cross sections, kinetic energy and angular distributions of fragments with charge 6$le$Z$le$28 emitted in 78,82Kr+40C at 5.5 MeV/A reactions were measured at the GANIL facility using the INDRA apparatus. This experiment aims to investigate the influe nce of the neutron enrichment on the decay mechanism of excited nuclei. Data are discussed in comparison with predictions of transition state and Hauser-Feshbach models.
148 - Philip A. Hughes 2000
We review recent relativistic hydrodynamic simulations of jets, and their interpretation in terms of the results from linear stability analysis. These studies show that, interpreted naively, the distribution of synchrotron intensity will in general b e a poor guide to the physical state (density and pressure) of the underlying flow, and that even if the physical state can be inferred, it, in turn, may prove to be a poor guide to the source dynamics, in terms of the transport of energy and momentum from the central engine. However, we demonstrate that an interplay of simulation and linear stability analysis provides a powerful tool for elucidating the nature and character of structures that jets may sustain. From such studies we can explain the complex behavior of observed jets, which manifest both stationary and propagating structures, without recourse to ad hoc macroscopic disturbances. This provides a framework for the interpretation of multi-epoch total intensity data wherein an understanding of the character of individual flow features will allow the effects of physical state and dynamics to be deconvolved.
84 - Hai-Liang Wu 2020
The evaluations of determinants with Legendre symbol entries have close relation with character sums over finite fields. Recently, Sun posed some conjectures on this topic. In this paper, we prove some conjectures of Sun and also study some variants. For example, we show the following result: Let $p=a^2+4b^2$ be a prime with $a,b$ integers and $aequiv1pmod4$. Then for the determinant $$S(1,p):={rm det}bigg[left(frac{i^2+j^2}{p}right)bigg]_{1le i,jle frac{p-1}{2}},$$ the number $S(1,p)/a$ is an integral square, which confirms a conjecture posed by Cohen, Sun and Vsemirnov.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا