ﻻ يوجد ملخص باللغة العربية
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at multipole $ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $Gmu/c^2 < 1.5 x 10^{-7}$ and $f_{10} < 0.015$ at 95% confidence that can be improved to $Gmu/c^2 < 1.3 x 10^{-7}$ and $f_{10} < 0.010$ on inclusion of high-$ell$ CMB data. For the abelian-Higgs field theory model we find, $Gmu_{AH}/c^2 < 3.2 x 10^{-7}$ and $f_{10} < 0.028$. The marginalized likelihoods for $f_{10}$ and in the $f_{10}$--$Omega_b h^2$ plane are also presented. We have also obtained constraints on $f_{10}$ for models with semi-local strings and global textures for which $Gmu/c^2 < 1.1 x 10^{-6}$. We have made complementarity searches for the specific non-Gaussian signatures of cosmic strings, calibrating with all-sky Planck resolution CMB maps generated from networks of post-recombination strings. We have obtained upper limits on the string tension at 95% confidence of $Gmu/c^2 < 8.8 x 10^{-7}$ using modal bispectrum estimation and $Gmu/c^2 < 7.8 x 10^{-7}$ for real space searches with Minkowski functionals. These are conservative upper bounds because only post-recombination string contributions have been included in the non-Gaussian analysis.
We present new measurements of CIB anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to co
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky,
The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because
We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In t
The ESAs Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of th