ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics of Arp 270: gas flows, nuclear activity and two regimes of star formation

42   0   0.0 ( 0 )
 نشر من قبل Javier Zaragoza-Cardiel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed the Arp 270 system (NGC 3395 & NGC 3396) in H{alpha} emission using the GH{alpha}FaS Fabry-Perot spectrometer on the 4.2m William Herschel Telescope (La Palma). In NGC 3396, which is edge-on to us, we detect gas inflow towards the centre, and also axially confined opposed outflows, characteristic of galactic superwinds, and we go on to examine the possibility that there is a shrouded AGN in the nucleus. The combination of surface brightness, velocity and velocity dispersion information enabled us to measure the radii, FWHM, and the masses of 108 HII regions in both galaxies. We find two distinct modes of physical behaviour, for high and lower luminosity regions. We note that the most luminous regions show especially high values for their velocity dispersions and hypothesize that these occur because the higher luminosity regions form from higher mass, gravitationally bound clouds while those at lower luminosity HII regions form within molecular clouds of lower mass, which are pressure confined.

قيم البحث

اقرأ أيضاً

We extract from the Sloan Digital Sky Survey a sample of 347 systems involving early type galaxies separated by less than 30 kpc, in projection, and 500 km/s in radial velocity. These close pairs are likely progenitors of dry mergers. The (optical) s pectra is used to determine how the interaction affects the star formation history and nuclear activity of the galaxies. The emission lines (or lack thereof) are used to classify the sample into AGN, star forming or quiescent. Increased AGN activity and reduced star formation in early-type pairs that already appear to be interacting indicate that the merging process changes the nature of nebular activity, a finding that is also supported by an increase in AGN luminosity with decreasing pair separation. Recent star formation is studied on the absorption line spectra, both through principal component analysis as well as via a comparison of the spectra with composite stellar population models. We find that the level of recent star formation in close pairs is raised relative to a control sample of early-type galaxies. This excess of residual star formation is found throughout the sample of close pairs and does not correlate with pair separation or with visual signs of interaction. Our findings are consistent with a scenario whereby the first stage of the encounter (involving the outer parts of the halos) trigger residual star formation, followed by a more efficient inflow towards the centre -- switching to an AGN phase -- after which the systems are quiescent.
We present a two-dimensional analysis of the gaseous excitation and kinematics of the inner 2.5 x 1.7 kpc^2 of the LINER/Seyfert 1 galaxy Arp 102B, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini North telescope at a spatial resolution of 250 pc. Emission-line flux maps show the same two-armed nuclear spiral we have discovered in previous observations with the HST-ACS camera. One arm reaches 1 kpc to the east and the other 500 pc to the west, with a 8.4 GHz VLA bent radio jet correlating with the former. The gas density is highest (500 - 900 cm^(-3)) at the nucleus and in the northern border of the east arm, at a region where the radio jet seems to be deflected. Channel maps show blueshifts but also some redshifts at the eastern arm and jet location which can be interpreted as originated in the front and back walls of an outflow pushed by the radio jet, suggesting also that the outflow is launched close to the plane of the sky. We estimate a mass outflow rate along the east arm of 0.26 - 0.32 Msun yr^(-1) (depending on the assumed outflow geometry), which is between one and two orders of magnitude higher than the mass accretion rate to the active nucleus, implying that there is mass-loading of the nuclear outflow from circumnuclear gas. The power of this outflow is 0.06 - 0.3%Lbol. We propose a scenario in which gas has been recently captured by Arp 102B in an interaction with Arp 102A, settling in a disk rotating around the nucleus of Arp 102B and triggering its nuclear activity. A nuclear jet is pushing the circumnuclear gas, giving origin to the nuclear arms. A blueshifted emitting gas knot is observed at 300 pc south-east from the nucleus and can be interpreted as another (more compact) outflow, with a possible counterpart to the north-west.
We present the Submillimeter Array observation of the CO J=2-1 transition towards the northern galaxy, ARP 302N, of the early merging system, ARP 302. Our high angular resolution observation reveals the extended spatial distribution of the molecular gas in ARP 302N. We find that the molecular gas has a very asymmetric distribution with two strong concentrations on either side of the center together with a weaker one offset by about 8 kpc to the north. The molecular gas distribution is also found to be consistent with that from the hot dust as traced by the 24 micro continuum emission observed by the Spitzer. The line ratio of CO J=2-1/1-0 is found to vary strongly from about 0.7 near the galaxy center to 0.4 in the outer part of the galaxy. Excitation analysis suggests that the gas density is low, less than 10$^3$ cm$^{-3}$, over the entire galaxy. By fitting the SED of ARP 302N in the far infrared we obtain a dust temperature of $Trm_d$=26-36 K and a dust mass of M$rm _{dust}$=2.0--3.6$times10^8$ M$rm_odot$. The spectral index of the radio continuum is around 0.9. The spatial distribution and spectral index of the radio continuum emission suggests that most of the radio continuum emission is synchrotron emission from the star forming regions at the nucleus and ARP302N-cm. The good spatial correspondance between the 3.6 cm radio continuum emission, the Spitzer 8 & 24 $mu$m data and the high resolution CO J=2-1 observation from the SMA shows that there is the asymmetrical star forming activities in ARP 302N.
Numerical models of gas inflow towards a supermassive black hole (SMBH) show that star formation may occur in such an environment through the growth of a gravitationally unstable gas disc. We consider the effect of nuclear activity on such a scenario . We present the first three-dimensional grid-based radiative hydrodynamic simulations of direct collisions between infalling gas streams and a $4 times 10^6~text{M}_odot$ SMBH, using ray-tracing to incorporate radiation consistent with an active galactic nucleus (AGN). We assume inflow masses of $ approx 10^5~text{M}_odot$ and explore radiation fields of 10% and 100% of the Eddington luminosity ($L_text{edd}$). We follow our models to the point of central gas disc formation preceding star formation and use the Toomre Q parameter ($Q_T$) to test for gravitational instability. We find that radiation pressure from UV photons inhibits inflow. Yet, for weak radiation fields, a central disc forms on timescales similar to that of models without feedback. Average densities of $> 10^{8}~text{cm}^{-3}$ limit photo-heating to the disc surface allowing for $Q_Tapprox1$. For strong radiation fields, the disc forms more gradually resulting in lower surface densities and larger $Q_T$ values. Mass accretion rates in our models are consistent with 1%--60% of the Eddington limit, thus we conclude that it is unlikely that radiative feedback from AGN activity would inhibit circumnuclear star formation arising from a massive inflow event.
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two h our exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that composite galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا