ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of Suprathermal Heavy Ions in CIRs during the Minimum of Solar Cycle 23

75   0   0.0 ( 0 )
 نشر من قبل Radoslav Bucik
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we examine the elemental composition of the 0.1-1 MeV/nucleon interplanetary heavy ions from H to Fe in corotating interaction regions (CIRs) measured by the SIT (Suprathermal Ion Telescope) instrument. We use observations taken on board the STEREO spacecraft from January 2007 through December 2010, which included the unusually long solar minimum following solar cycle 23. During this period instruments on STEREO observed more than 50 CIR events making it possible to investigate CIR ion abundances during solar minimum conditions with unprecedented high statistics. The observations reveal annual variations of relative ion abundances in the CIRs during the 2007-2008 period as indicated by the He/H, He/O and Fe/O elemental ratios. We discuss possible causes of the variability in terms of the helium focusing cone passage and heliolatitude dependence. The year 2009 was very quiet in CIR event activity. In 2010 the elemental composition in CIRs were influenced by sporadic solar energetic particle (SEP) events. The 2010 He/H and He/O abundance ratios in CIRs show large event to event variations with values resembling the SEP-like composition. This finding points out that the suprathermal SEPs could be the source population for CIR acceleration.

قيم البحث

اقرأ أيضاً

64 - R. Bucik , U. Mall , A. Korth 2013
We examine the composition of the 0.1 - 1 MeV/n interplanetary heavy ions from H to Fe in corotating interaction regions (CIRs) measured by the SIT (Suprathermal Ion Telescope) instrument. We use observations taken on board the two STEREO spacecraft during the unusually long minimum of Solar Cycle 23 from January 2007 through December 2010. During this period instruments on STEREO observed more than 50 CIR events making it possible to investigate CIR ion abundances during solar minimum conditions with unprecedentedly high statistics. The observations reveal annual variations of relative ion abundances in the CIRs during the 2007 - 2008 period. In 2010 the elemental composition in CIRs were influenced by solar energetic particle events.
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and remove the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006-2007, long-lived low- and mid-latitude coronal holes in 2006 - mid-2008 and mostly the quiet Sun in 2009. We examine both Carrington Rotation averages of selected solar plasma, charge state and compositional parameters and distributions of these parameters related to Quiet Sun, Active Region Sun and the Coronal Hole Sun. While some of the investigated parameters (e.g., speed, the C^{+6}/C^{+4} and He/H ratio) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty in distinguishing between the slow solar wind sources based on the inspection of the solar wind conditions.
76 - Bhuwan Joshi , P. Pant , 2009
The data of sunspot numbers, sunspot areas and solar flare index during cycle 23 are analyzed to investigate the intermediate-term periodicities. Power spectral analysis has been performed separately for the data of the whole disk, northern and south ern hemispheres of the Sun. Several significant midrange periodicities ($sim$175, 133, 113, 104, 84, 63 days) are detected in sunspot activity. Most of the periodicities in sunspot numbers generally agree with those of sunspot areas during the solar cycle 23. The study reveals that the periodic variations in the northern and southern hemispheres of the Sun show a kind of asymmetrical behavior. Periodicities of $sim$175 days and $sim$133 days are highly significant in the sunspot data of northern hemisphere showing consistency with the findings of Lean (1990) during solar cycles 12-21. On the other hand, southern hemisphere shows a strong periodicity of about 85 days in terms of sunspot activity. The analysis of solar flare index data of the same time interval does not show any significant peak. The different periodic behavior of sunspot and flare activity can be understood in the light of hypothesis proposed by Ballester et al. (2002), which suggests that during cycle 23, the periodic emergence of magnetic flux partly takes place away from developed sunspot groups and hence may not necessarily increase the magnetic complexity of sunspot groups that leads to the generation of flares.
In this work, we analysed the physical parameters of the spotless actives regions observed during solar minimum 23 - 24 (2007 - 2010). The study was based on radio maps at 17~GHz obtained by the Nobeyama Radioheliograph (NoRH) and magnetograms provid ed by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). The results shows that the spotless active regions presents the same radio characteristics of a ordinary one, they can live in the solar surface for long periods (>10 days), and also can present small flares.
We deduce on hourly basis the spatial gradient of the cosmic ray density in three dimensions from the directional anisotropy of high-energy (~50 GeV) galactic cosmic ray (GCR) intensity observed with a global network of muon detectors on the Earths s urface. By analyzing the average features of the gradient in the corotational interaction regions (CIRs) recorded in successive two solar activity minimum periods, we find that the observed latitudinal gradient (Gz) changes its sign from negative to positive on the Earths heliospheric current sheet (HCS) crossing from the northern to the southern hemisphere in A<0 epoch, while it changes from positive to negative in A>0 epoch. This is in accordance with the drift prediction. We also find a negative enhancement in Gx after the HCS crossing in both A<0 and A>0 epochs, but not in Gy. This asymmetrical feature of Gx and Gy indicates significant contributions from the parallel and perpendicular diffusions to the the gradient in CIRs in addition to the contribution from the drift effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا