ﻻ يوجد ملخص باللغة العربية
We examine the Inert Doublet Model in light of the discovery of a Higgs-like boson with a mass of roughly 126 GeV at the LHC. We evaluate one-loop corrections to the scalar masses and perform a numerical solution of the one-loop renormalization group equations. Demanding vacuum stability, perturbativity, and S-matrix unitarity, we compute the scale up to which the model can be extrapolated. From this we derive constraints on the model parameters in the presence of a 126 GeV Higgs boson. We perform an improved calculation of the dark matter relic density with the Higgs mass fixed to the measured value, taking into account the effects of three- and four-body final states resulting from off-shell production of gauge bosons in dark matter annihilation. Issues related to direct detection of dark matter are discussed, in particular the role of hadronic uncertainties. The predictions for the interesting decay mode h ->gamma gamma are presented for scenarios which fulfill all model constraints, and we discuss how a potential enhancement of this rate from the charged inert scalar is related to the properties of dark matter in this model. We also apply LHC limits on Higgs boson decays to invisible final states, which provide additional constraints on the mass of the dark matter candidate. Finally, we propose three benchmark points that capture different aspects of the relevant phenomenology.
We evaluate radiative corrections to the Higgs boson couplings in the inert doublet model, in which the lightest component of the $Z_2^{}$ odd scalar doublet field can be a dark matter candidate. The one-loop contributions to the $hVV$, $hff$ and $hh
The inert doublet model, a minimal extension of the Standard Model by a second higgs doublet with no direct couplings to quarks or leptons, is one of the simplest scenarios that can explain the dark matter. In this paper, we study in detail the impac
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degenera
We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana single
In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental para