ﻻ يوجد ملخص باللغة العربية
[Background] A complete set is a minimum set of observables which allows one to determine the underlying reaction amplitudes unambiguously. Pseudoscalar-meson photoproduction from the nucleon is characterized by four such amplitudes and complete sets involve single- and double-polarization observables. [Purpose] Identify complete sets of observables, and study how measurements with finite error bars impact their potential to determine the reaction amplitudes unambiguously. [Method] The authors provide arguments to employ the transversity representation in order to determine the amplitudes in pseudoscalar-meson photoproduction. It is studied whether the amplitudes in the transversity basis for the $gamma p to K^+Lambda$ reaction can be estimated without ambiguity. To this end, data from the GRAAL collaboration and mock data from a realistic model are analyzed. [Results] It is illustrated that the moduli of normalized transversity amplitudes can be determined from precise single-polarization data. Starting from mock data with achievable experimental resolution, it is quite likely to obtain imaginary solutions for the relative phases of the amplitudes. Also the real solutions face a discrete phase ambiguity which makes it impossible to obtain a statistically significant solution for the relative phases at realistic experimental conditions. [Conclusions] Single polarization observables are effective in determining the moduli of the amplitudes in a transversity basis. Determining the relative phases of the amplitudes from double-polarization observables is far less evident. The availability of a complete set of observables does not allow one to unambiguously determine the reaction amplitudes with statistical significance.
By exploiting the underlying symmetries of the relative phases of the pseudoscalar meson photoproduction amplitude, we determine all the possible sets of four double-spin observables that resolve the phase ambiguity of the amplitude in transversity b
Pseudoscalar-meson photoproduction is characterized by four complex reaction amplitudes. A complete set is a minimum theoretical set of observables that allow to determine these amplitudes unambiguously. It is studied whether complete sets remain com
Spin-observables in pseudoscalar meson photoproduction is discussed. This work is complementary to the earlier works on this topic. Here, the reaction amplitude is expressed in Pauli-spin basis which allows to calculate all the observables straightfo
Amplitude and partial wave analyses for pion, eta or kaon photoproduction are discussed in the context of `complete experiments. It is shown that the model-independent helicity amplitudes obtained from at least 8 polarization observables including be
To learn about a physical system of interest, experimental results must be able to discriminate among models. We introduce a geometrical measure to quantify the distance between models for pseudoscalar-meson photoproduction in amplitude space. Experi