ترغب بنشر مسار تعليمي؟ اضغط هنا

Search of the Earth Limb Fermi Data and Non-Galactic Center Region Fermi Data for Signs of Narrow Lines

54   0   0.0 ( 0 )
 نشر من قبل Elliott Bloom
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the spring of 2012 there have been many papers published using Fermi LAT public data that claim evidence for narrow spectral lines coming from the region of the Galactic center. This study uses non-Galactic center Fermi-LAT data from survey mode observations, and Earth limb Fermi data to test the dark matter interpretation of this feature and better understand its origins.

قيم البحث

اقرأ أيضاً

66 - Mattia Di Mauro 2021
The excess of $gamma$ rays in the data measured by Fermi-LAT from the Galactic center region is one of the most intriguing mysteries in Astroparticle Physics. This Galactic center excess (GCE), has been measured with respect to different interstellar emission models (IEMs), source catalogs, data selections and techniques. Although several proposed interpretations have appeared in the literature, there are not firm conclusions as to its origin. The main difficulty in solving this puzzle lies in modeling a region of such complexity and thus precisely measuring the characteristics of the GCE. In this paper, we use 11 years of Fermi-LAT data, state of the art IEMs, and the newest 4FGL source catalog to provide precise measurements of the energy spectrum, spatial morphology, position, and sphericity of the GCE. We find that the GCE has a spectrum which is peaked at a few GeV and is well fit with a log-parabola. The normalization of the spectrum changes by roughly $60%$ when using different IEMs, data selections and analysis techniques. The spatial distribution of the GCE is compatible with a dark matter (DM) template produced with a generalized NFW density profile with slope $gamma = 1.2-1.3$. No energy evolution is measured for the GCE morphology between $0.6-30$ GeV at a level larger than $10%$ of the $gamma$ average value, which is 1.25. The analysis of the GCE modeled with a DM template divided into quadrants shows that the spectrum and spatial morphology of the GCE is similar in different regions around the Galactic center. Finally, the GCE centroid is compatible with the Galactic center, with best-fit position between $l=[-0.3^{circ},0.0^{circ}],b=[-0.1^{circ},0.0^{circ}]$, and it is compatible with a spherical symmetric morphology. In particular, fitting the DM spatial profile with an ellipsoid gives a major-to-minor axis ratio between 0.8-1.2.
Employing the 12 NaI detectors in the Fermi GBM, the Earth Occultation Technique (EOT) can be used to measure the fluxes of x-ray and gamma-ray sources. Each time a source passes behind the Earth (or emerges from behind the Earth), a step-like featur e is produced in the detector count rate. With a predefined catalog of source positions, the times of the occultation steps can be calculated, the individual steps fit, and the fluxes derived. However, in order to find new sources and generate a complete catalog, a method is needed for generating an image of the sky. An imaging algorithm has been developed to generate all-sky images using the GBM data. Here we present imaging results from ~2.5 years of data in the 12-25 keV and 100-300 keV energy bands.
183 - D. Gaggero 2017
We present a novel interpretation of the gamma-ray diffuse emission measured by H.E.S.S. in the Galactic Center (GC) region and the Galactic ridge. Our starting base is an updated analysis of PASS8 Fermi-LAT data, which allows to extend down to few G eV the spectra measured by H.E.S.S. and to infer the primary CR radial distribution above 100 GeV. We compare those results with a CR transport model assuming a harder scaling of the diffusion coefficient with rigidity in the inner Galaxy. Such a behavior reproduces the radial dependence of the CR spectral index recently inferred from Fermi-LAT measurements in the inner GP. We find that, in this scenario, the bulk of the Galactic ridge emission can be naturally explained by the interaction of the diffuse, steady-state Galactic CR sea interacting with the gas present in the Central molecular zone. The evidence of a GC PeVatron is significantly weaker than that inferred adopting a conventional (softer) CR sea.
We present a novel interpretation of the $gamma$-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data : we extend down to few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the Central Molecular Zone. Although our results leave room for a residual radial-dependent emission associated with a central source, the relevance of the large-scale background prevents from a solid evidence of a GC Pevatron.
We develop a method to search for pair halos around active galactic nuclei (AGN) through a temporal analysis of gamma-ray data. The basis of our method is an analysis of the spatial distributions of photons coming from AGN flares and from AGN quiesce nt states and a further comparison of these two spatial distributions. This method can also be used for a reconstruction of a point spread function (PSF). We found no evidence for a pair halo component through this method by applying it to the Fermi-LAT data in the energy bands of 4.5-6, 6-10, and >10 GeV and set upper limits on the fraction of photons attributable to a pair halo component. An illustration of how to reconstruct the PSF of Fermi-LAT is given. We demonstrate that the PSF reconstructed by using this method is in good agreement with that which was obtained by using the gamma-ray data taken by LAT in the direction of the Crab pulsar and nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا