ترغب بنشر مسار تعليمي؟ اضغط هنا

Star-forming regions of the Aquila rift cloud complex. I. NH3 tracers of dense molecular cores

141   0   0.0 ( 0 )
 نشر من قبل Sergei Levshakov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Aims. In the present part of our survey we search for ammonia emitters in the Aquila rift complex which trace the densest regions of molecular clouds. Methods. From a CO survey carried out with the Delingha 14-m telescope we selected ~150 targets for observations in other molecular lines. Here we describe the mapping observations in the NH3(1,1) and (2,2) inversion lines of the first 49 sources performed with the Effelsberg 100-m telescope. Results. The NH3(1,1) and (2,2) emission lines are detected in 12 and 7 sources, respectively. Among the newly discovered NH3 sources, our sample includes the following well-known clouds: the starless core L694-2, the Serpens cloud Cluster B, the Serpens dark cloud L572, the filamentary dark cloud L673, the isolated protostellar source B335, and the complex star-forming region Serpens South. Angular sizes between 40 and 80 (~0.04-0.08 pc) are observed for compact starless cores but as large as 9 (~0.5 pc) for filamentary dark clouds. The measured kinetic temperatures of the clouds lie between 9K and 18K. From NH3 excitation temperatures of 3-8K we determine H2 densities with typical values of ~(0.4-4) 10^4 cm^-3. The masses of the mapped cores range between ~0.05 and ~0.5M_solar. The relative ammonia abundance, X= [NH3]/[H2], varies from 10^-7 to 5 10^-7 with the mean <X> = (2.7+/-0.6) 10^-7 (estimated from spatially resolved cores assuming the filling factor eta = 1). In two clouds, we observe kinematically split NH3 profiles separated by ~1 km/s. The splitting is most likely due to bipolar molecular outflows for one of which we determine an acceleration of <~ 0.03 km/s/yr. A starless core with significant rotational energy is found to have a higher kinetic temperature than the other ones which is probably caused by magnetic energy dissipation.



قيم البحث

اقرأ أيضاً

We surveyed the Aquila Rift complex including the Serpens South and W40 region in the NH$_3$(1,1) and (2,2) transitions making use of the Nanshan 26-m telescope. The kinetic temperatures of the dense gas in the Aquila Rift complex range from 8.9 to 3 5.0K with an average of 15.3$pm$6.1K. Low gas temperatures associate with Serpens South ranging from 8.9 to 16.8K with an average 12.3$pm$1.7K, while dense gas in the W40 region shows higher temperatures ranging from 17.7 to 35.0K with an average of 25.1$pm$4.9 K. A comparison of kinetic temperatures against HiGal dust temperatures indicates that the gas and dust temperatures are in agreement in the low mass star formation region of Serpens South. In the high mass star formation region W40, the measured gas kinetic temperatures are higher than those of the dust. The turbulent component of the velocity dispersion of NH$_3$(1,1) is found to be positively correlated with the gas kinetic temperature, which indicates that the dense gas may be heated by dissipation of turbulent energy. For the fractional total-NH3 abundance obtained by a comparison with Herschel infrared continuum data representing dust emission we find values from 0.1 to 21$times 10^{-8}$ with an average of 6.9$(pm 4.5)times 10^{-8}$. Serpens South also shows a fractional total-NH3 abundance ranging from 0.2 to 21$times 10^{-8}$ with an average of 8.6($pm 3.8)times 10^{-8}$. In W40, values are lower, between 0.1 and 4.3$times 10^{-8}$ with an average of 1.6($pm 1.4)times 10^{-8}$. Weak velocity gradients demonstrate that the rotational energy is a negligible fraction of the gravitational energy. In W40, gas and dust temperatures are not strongly dependent on the projected distance to the recently formed massive stars. Overall, the morphology of the mapped region is ring-like, with strong emission at lower and weak emission at higher Galactic longitudes.
We present and discuss the results of the Herschel Gould Belt survey observations in a ~11 deg^2 area of the Aquila molecular cloud complex at d~260 pc, imaged with the SPIRE/PACS cameras from 70 to 500 micron. We identify a complete sample of starle ss dense cores and embedded protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the prestellar cores is very similar in shape to the stellar initial mass function (IMF), supporting the earlier view that there is a close physical link between the IMF and the CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40%. By comparing the numbers of starless cores to the number of young stellar objects, we estimate that the lifetime of prestellar cores is ~1 Myr. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to A_V~7, and ~75% of them lie within filamentary structures with supercritical masses per unit length >~16 M_sun/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at A_V>7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic efficiency SFR/M_dense ~5+-2 x 10^-8 yr^-1 for the star formation process in dense gas.
Magnetic and energetic properties are presented for 17 dense cores within a few hundred pc of the Sun. Their plane-of-sky field strengths are estimated from the dispersion of polarization directions, following Davis, Chandrasekhar and Fermi (DCF). Th eir ratio of mass to magnetic critical mass is 0.5-3, indicating nearly critical field strengths. The field strength B_pos is correlated with column density N as B_pos~N^p, where p=1.05+-0.08, and with density n as B_pos~n^q, where q=0.66+-0.05. These magnetic properties are consistent with those derived from Zeeman studies (Crutcher et al. 2010), with less scatter. Relations between virial mass M_V, magnetic critical mass M_B, and Alfven amplitude sigma_B/B match the observed range of M/M_B for cores observed to be nearly virial, with M/M_V=0.5-2, with moderate Alfven amplitudes, and with sigma_B/B=0.1-0.4. The B-N and B-n correlations in the DCF and Zeeman samples can be explained when such bound, Alfvenic, and nearly-critical cores have central concentration and spheroidal shape. For these properties, B~N because M/M_B is nearly constant compared to the range of N, and B~n^(2/3) because M^(1/3) is nearly constant compared to the range of n^(2/3). The observed core fields which follow B~n^(2/3) need not be much weaker than gravity, in contrast to core fields which follow B~n^(2/3) due to spherical contraction at constant mass (Mestel 1966). Instead, the nearly critical values of M/M_B suggest that the observed core fields are nearly as strong as possible, among values which allow gravitational contraction.
We present combined interferometer and single dish telescope data of NH3 (J,K) = (1,1) and (2,2) emission towards the clustered star forming Ophiuchus B, C and F Cores at high spatial resolution (~1200 AU) using the Australia Telescope Compact Array, the Very Large Array, and the Green Bank Telescope. While the large scale features of the NH3 (1,1) integrated intensity appear similar to 850 micron continuum emission maps of the Cores, on 15 (1800 AU) scales we find significant discrepancies between the dense gas tracers in Oph B, but good correspondence in Oph C and F. Using the Clumpfind structure identifying algorithm, we identify 15 NH3 clumps in Oph B, and 3 each in Oph C and F. Only five of the Oph B NH3 clumps are coincident within 30 (3600 AU) of a submillimeter clump. We find v_LSR varies little across any of the Cores, and additionally varies by only ~1.5 km/s between them. The observed NH3 line widths within the Oph B and F Cores are generally large and often mildly supersonic, while Oph C is characterized by narrow line widths which decrease to nearly thermal values. We find several regions of localized narrow line emission (Delta v < 0.4 km/s), some of which are associated with NH3 clumps. We derive the kinetic temperatures of the gas, and find they are remarkably constant across Oph B and F, with a warmer mean value (T_K = 15 K) than typically found in isolated regions and consistent with previous results in clustered regions. Oph C, however, has a mean T_K = 12 K, decreasing to a minimum T_K = 9.4 K towards the submillimeter continuum peak, similar to previous studies of isolated starless cores. There is no significant difference in temperature towards protostars embedded in the Cores. [Abridged]
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا