ترغب بنشر مسار تعليمي؟ اضغط هنا

The vast thin plane of M31 co-rotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

412   0   0.0 ( 0 )
 نشر من قبل Yanbin Yang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery by Ibata et al. (2013) of a vast thin disk of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disk. We find that the VTDS plane is coinciding with several stellar, tidally-induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the Giant Stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disk, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS dSphs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.


قيم البحث

اقرأ أيضاً

Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our G alaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Ways disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.
120 - S. C. Williams 2014
We report the results of a survey of M31 novae in quiescence. This is the first catalog of extragalactic systems in quiescence to be published, and contains data for 38 spectroscopically confirmed novae from 2006 to 2012. We used Liverpool Telescope (LT) images of each nova during eruption to define an accurate position for each system. These positions were then matched to archival Hubble Space Telescope (HST) images and we performed photometry on any resolved objects that were coincident with the eruption positions. The survey aimed to detect quiescent systems with red giant secondaries, as only these, along with a few systems with bright sub-giant secondaries, will be resolvable in the HST images. There are only a few confirmed examples of such red giant novae in our Galaxy, the majority of which are recurrent novae. However, we find a relatively high percentage of the nova eruptions in M31 may occur in systems containing red giant secondaries. Of the 38 systems in this catalog, 11 have a progenitor candidate whose probability of being a coincidental alignment is less than 5%. We show that, at the 3 sigma limit, up to only two of these eleven systems may be due to chance alignments, leading to an estimate of the M31 nova population with evolved secondaries of up to 24%, compared to the ~3% seen Galactically. Such an elevated proportion of nova systems with evolved secondaries may imply the presence of a much larger population of recurrent novae than previously thought. This would have considerable impact, particularly with regards their potential as Type Ia supernova progenitors.
211 - H. Arp , D. Carosati 2007
Previous analyses have shown companion galaxies aligned along the minor axis of M31. The alignment includes some galaxies of higher redshift than conventionally accepted for Local Group members. Here we look at the distribution of all high redshift o bjects listed in a 10 x 10 deg. area around M31. We find not only galaxies of higher redshift but also quasars along the minor axis of this brightest Local Group galaxy, Some are an unusual class of low z, quasar-galaxy. Previously observers had noted radio sources aligned along the minor axis of M31. The ejection directions of quasars from active galaxy nuclei is also along the minor axis within a cone of about 20 deg. opening angle. It is shown here that the quasar-like and higher redshift objects associated with M31 are relatively concentrated along this axis. M33 also falls closely along the minor axis of M31 and the famous 3C48 and similar redshift galaxy/quasars are seen along a line coming from this Local Group companion of M31. What appears to be dusty nebulosity has also been shown to exist along this extended line in the sky.
In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (R G-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for eleven systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis we examine the distribution of optical decline times (t(2)) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t(2) distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that 30 (+13/-10) percent of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99 percent confidence level, >10 percent of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge, indeed the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations, and may be rare in old stellar populations, such as early-type galaxies.
The numerous streams in the M31 halo are currently assumed to be due to multiple minor mergers. Here we use the GADGET2 simulation code to test whether M31 could have experienced a major merger in its past history. It results that a 3+/-0.5:1 gaseous rich merger with r(per)=25+/-5 kpc and a polar orbit can explain many properties of M31 and of its halo. The interaction and the fusion may have begun 8.75+/-0.35 Gyr and 5.5 +/-0.5 Gyr ago, respectively. With an almost quiescent star formation history before the fusion we retrieve fractions of bulge, thin and thick disks as well as relative fractions of intermediate age and old stars in both the thick disk and the Giant Stream. The Giant Stream is caused by returning stars from a tidal tail previously stripped from the satellite prior to the fusion. These returning stars are trapped into elliptical orbits or loops for almost a Hubble time period. Large loops are also predicted and they scale rather well with the recently discovered features in the M31 outskirts. We demonstrate that a single merger could explain first-order (intensity and size), morphological and kinematical properties of the disk, thick disk, bulge and streams in the halo of M31, as well as the distribution of stellar ages, and perhaps metallicities. It challenges scenarios assuming one minor merger per feature in the disk (10 kpc ring) or at the outskirts (numerous streams & thick disk). Further constraints will help to properly evaluate the impact of such a major event to the Local Group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا