ﻻ يوجد ملخص باللغة العربية
We investigate numerically parametrically driven coupled nonlinear Schrodinger equations modelling the dynamics of coupled wavefields in a periodically oscillating double-well potential. The equations describe among other things two coupled periodically-curved optical waveguides with Kerr nonlinearity or horizontally shaken Bose-Einstein condensates in a double-well magnetic trap. In particular, we study the persistence of equilibrium states of the undriven system due to the presence of the parametric drive. Using numerical continuations of periodic orbits and calculating the corresponding Floquet multipliers, we find that the drive can (de)stabilize a continuation of an equilibrium state indicated by the change of the (in)stability of the orbit. Hence, we show that parametric drives can provide a powerful control to nonlinear (optical or matter wave) field tunneling. Analytical approximations based on an averaging method are presented. Using perturbation theory the influence of the drive on the symmetry breaking bifurcation point is discussed.
We demonstrate that an ultracold many-body bosonic ensemble confined in a one-dimensional (1D) double-well (DW) potential can exhibit chaotic dynamics due to the presence of a single impurity. The non-equilibrium dynamics is triggered by a quench of
We study the dynamics of matter waves in an effectively one-dimensional Bose-Einstein condensate in a double well potential. We consider in particular the case when one of the double wells confines excited states. Similarly to the known ground state
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rap
We investigate the dynamics of two-component Bose-Josephson junction composed of atom-molecule BECs. Within the semiclassical approximation, the multi-degree of freedom of this system permits chaotic dynamics, which does not occur in single-component
We demonstrate an enhancement in the vortex generation when artificial gauge potential is introduced to condensates confined in a double well potential. This is due to the lower energy required to create a vortex in the low condensate density region