ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

191   0   0.0 ( 0 )
 نشر من قبل Kaiyou Wang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging.

قيم البحث

اقرأ أيضاً

85 - I. Weymann , J. Barnas 2008
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy stems are highly asymmetric with respect to the bias reversal. As a consequence, nanotubes coupled to one nonmagnetic and one ferromagnetic lead can be effectively used as spin diodes whose functionality can be additionally controlled by a gate voltage.
We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the s uperconducting leads is observed in both regimes and in the Kondo regime a narrow zero bias peak interpreted as a proximity induced supercurrent persist in Coulomb blockade diamonds with Kondo resonances.
We observe current rectification in a molecular diode consisting of a semiconducting single-wall carbon nanotube and an impurity. One half of the nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a typical semiconducting n anotube. The other half of the nanotube has the impurity on it, and its I-V characteristic is that of a diode. Current in the nanotube diode is carried by holes transported through the molecules one-dimensional subbands. At 77 Kelvin we observe a step-wise increase in the current through the diode as a function of gate voltage, showing that we can control the number of occupied one-dimensional subbands through electrostatic doping.
We describe a method to fabricate clean suspended single-wall carbon nanotube (SWCNT) transistors hosting a single quantum dot ranging in length from a few 10s of nm down to $approx$ 3 nm. We first align narrow gold bow-tie junctions on top of indivi dual SWCNTs and suspend the devices. We then use a feedback-controlled electromigration to break the gold junctions and expose nm-sized sections of SWCNTs. We measure electron transport in these devices at low temperature and show that they form clean and tunable single-electron transistors. These ultra-short suspended transistors offer the prospect of studying THz oscillators with strong electron-vibron coupling.
A top-gated single wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anti-crossings between indirectly coupled levels and higher order cotunneling are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا