ترغب بنشر مسار تعليمي؟ اضغط هنا

Challenges to our understanding of radio relics: X-ray observations of the Toothbrush cluster

114   0   0.0 ( 0 )
 نشر من قبل Georgiana Ogrean
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cluster 1RXS J0603.3+4214 is a merging galaxy cluster that hosts three radio relics and a giant radio halo. The northern relic, the Toothbrush, is 1.9-Mpc long and has an unusual linear morphology. According to simple diffusive shock acceleration theory, its radio spectral index indicates a Mach number of 3.3-4.6. Here, we present results from a deep XMM-Newton observation of the cluster. We observe two distinct cluster cores that have survived the merger. The presence of three shocks at or near the locations of the radio relics is confirmed by density and temperature discontinuities. However, the observation poses several puzzles that challenge our understanding of radio relics: (i) at the Toothbrush, the shock Mach number is not larger than 2, in apparent conflict with the shock strength predicted from the radio spectrum; (ii) at the Toothbrush, the shock front is, in part, spatially offset from the radio emission; (iii) at the eastern relic, we detect a temperature jump corresponding to a Mach number of approximately 2.5, but there is no associated surface brightness discontinuity. We discuss possible explanations for these findings.



قيم البحث

اقرأ أيضاً

Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not f ully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known $sim2.1$ Mpc radio halo and $sim1.5$ Mpc radio relic. We carry out a radio spectral analysis from which we determine the relics injection spectral index to be $alpha_{rm{inj}} = -1.12 pm 0.19$. This corresponds to a shock Mach number of $mathcal{M}$ = 2.05$^{+0.31}_{-0.19}$ under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halos spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure $-1.81 pm 0.26$ and $-0.63 pm 0.21$ for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of $R=1.39^{+0.34}_{-0.22}$ co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of $mathcal{M}=1.26^{+0.25}_{-0.15}$.
Diffuse radio emission from galaxy clusters in the form of radio halos and relics are tracers of the shocks and turbulence in the intra-cluster medium. The imprints of the physical processes that govern their origin and evolution can be found in thei r radio morphologies and spectra. The role of mildly relativistic population of electrons may be crucial for the acceleration mechanisms to work efficiently. Low frequency observations with telescopes that allow imaging of extended sources over a broad range of low frequencies ($< 2$ GHz) offer the best tools to study these sources. I will review the Giant Metrewave Radio Telescope (GMRT) observations in the past few years that have led to: i) statistical studies of large samples of galaxy clusters, ii) opening of the discovery space in low mass clusters and iii) tracing the spectra of seed relativistic electrons using the Upgraded GMRT.
We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzakus low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal c overage. We find significant anisotropies in the temperature and entropy profiles, with a region of lower temperature and entropy occurring to the south east, possibly the result of accretion activity in this direction. Away from this cold feature, the thermodynamic properties are consistent with an entropy profile which rises, but less steeply than the predictions of purely gravitational hierarchical structure formation. Excess emission in the northern direction can be explained due to the overlap of the emission from the outskirts of Abell 2029 and nearby Abell 2033 (which is at slightly higher redshift). These observations suggest that the assumptions of spherical symmetry and hydrostatic equilibrium break down in the outskirts of galaxy clusters, which poses challenges for modelling cluster masses at large radii and presents opportunities for studying the formation and accretion history of clusters.
We present deep LOFAR observations between 120-181 MHz of the Toothbrush (RX J0603.3+4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times de eper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of $alpha = -0.8 pm 0.1$ at the northern edge of the main radio relic, steepening towards the south to $alpha approx - 2$. The spectral index of the radio halo is remarkably uniform ($alpha = -1.16$, with an intrinsic scatter of $leq 0.04$). The observed radio relic spectral index gives a Mach number of $mathcal{M} = 2.8^{+0.5}_{-0.3}$, assuming diffusive shock acceleration (DSA). However, the gas density jump at the northern edge of the large radio relic implies a much weaker shock ($mathcal{M} approx 1.2$, with an upper limit of $mathcal{M} approx 1.5$). The discrepancy between the Mach numbers calculated from the radio and X-rays can be explained if either (i) the relic traces a complex shock surface along the line of sight, or (ii) if the radio relic emission is produced by a re-accelerated population of fossil particles from a radio galaxy. Our results highlight the need for additional theoretical work and numerical simulations of particle acceleration and re-acceleration at cluster merger shocks.
Multiwavelength studies of radio relics at merger shocks set powerful constraints on the relics origin and formation mechanism. However, for X-ray observations, a main difficulty is represented by the low X-ray surface brightness far out in the clust er outskirts, where relics are typically found. Here, we present XMM-Newton results from a 130-ks observation of CIZA J2242.8+5301, a cluster at z=0.19 that hosts a double radio relic. We focus on the well-defined northern relic. There is a difference of ~55% between the temperature we measure behind the relic, and the temperature measured with Suzaku. We analyse the reasons for this large discrepancy, and discuss the possibility of reliably measuring the temperature beyond the northern relic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا