ترغب بنشر مسار تعليمي؟ اضغط هنا

Ratchet effect driven by Coulomb friction: the asymmetric Rayleigh piston

119   0   0.0 ( 0 )
 نشر من قبل Alessandro Sarracino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of Coulomb friction is studied in the framework of collisional ratchets. It turns out that the average drift of these devices can be expressed as the combination of a term related to the lack of equipartition between the probe and the surrounding bath, and a term featuring the average frictional force. We illustrate this general result in the asymmetric Rayleigh piston, showing how Coulomb friction can induce a ratchet effect in a Brownian particle in contact with an equilibrium bath. An explicit analytical expression for the average velocity of the piston is obtained in the rare collision limit. Numerical simulations support the analytical findings.

قيم البحث

اقرأ أيضاً

78 - A. Gnoli , A. Petri , F. Dalton 2012
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetri c wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cu sp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.
We consider a massive inelastic piston, whose opposite faces have different coefficients of restitution, moving under the action of an infinitely dilute gas of hard disks maintained at a fixed temperature. The dynamics of the piston is Markovian and obeys a continuous Master Equation: however, the asymmetry of restitution coefficients induces a violation of detailed balance and a net drift of the piston, as in a Brownian ratchet. Numerical investigations of such non-equilibrium stationary state show that the velocity fluctuations of the piston are symmetric around the mean value only in the limit of large piston mass, while they are strongly asymmetric in the opposite limit. Only taking into account such an asymmetry, i.e. including a third parameter in addition to the mean and the variance of the velocity distribution, it is possible to obtain a satisfactory analytical prediction for the ratchet drift velocity.
116 - Amit Lakhanpal , Tom Chou 2007
We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction pos itioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between ``hydrolyzed and ``unhydrolyzed states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes which yield maximal domain wall flux, leading to optimal particle drift.
A collective, macroscopic signature to detect radiation friction in laser-plasma experiments is proposed. In the interaction of superintense circularly polarized laser pulses with high density targets, the effective dissipation due to radiative losse s allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of a quasistatic axial magnetic field. This peculiar inverse Faraday effect is investigated by analytical modeling and three-dimensional simulations, showing that multi-gigagauss magnetic fields may be generated at laser intensities $>10^{23}~mbox{W cm}^{-2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا