ﻻ يوجد ملخص باللغة العربية
The pressure induced superconductivity and structural evolution for Bi2Se3 single crystal have been studied. The emergence of superconductivity with onset transition temperature (Tc) about 4.4K is observed around 12GPa. Tc increases rapidly to the highest 8.5K at 16GPa, decreases to 6.5K at 21GPa, then keep almost constant. It is found that Tc versus pressure is closely related to the carrier density which increases by more than two orders of magnitude from 2GPa to 23GPa. High pressure synchrotron radiation measurements reveal structure transitions occur around 12GPa, 20GPa, and above 29GPa, respectively. A phase diagram of superconductivity versus pressure is obtained.
Strontium intercalation between van der Waals bonded layers of topological insulator Bi2Se3 is found to induce superconductivity with a maximum Tc of 2.9 K. Transport measurement on single crystal of optimally doped sample Sr0.1Bi2Se3 shows weak anis
Recently, C. M. Pepin textit{et al.} [Science textbf{357}, 382 (2017)] reported the formation of several new iron polyhydrides FeH$_x$ at pressures in the megabar range, and spotted FeH$_5$, which forms above 130 GPa, as a potential high-tc supercon
Nematic superconductivity is a novel class of superconductivity characterized by spontaneous rotational-symmetry breaking in the superconducting gap amplitude and/or Cooper-pair spins with respect to the underlying lattice symmetry. Doped Bi2Se3 supe
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (${T_{rm c}}$) superconductors. Unlike other iron-based superconductors, F
We have studied the electron transport properties of topological insulator-related material Bi2Se3 near the superconducting Pb-Bi2Se3 interface, and found that a superconducting state is induced over an extended volume in Bi2Se3. This state can carry