ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating Quantum Magnetism with Correlated Non-Neutral Ion Plasmas

161   0   0.0 ( 0 )
 نشر من قبل John Bollinger
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By employing forces that depend on the internal electronic state (or spin) of an atomic ion, the Coulomb potential energy of a strongly coupled array of ions can be modified in a spin-dependent way to mimic effective quantum spin Hamiltonians. Both ferromagnetic and antiferromagnetic interactions can be implemented. We use simple models to explain how the effective spin interactions are engineered with trapped-ion crystals. We summarize the type of effective spin interactions that can be readily generated, and discuss an experimental implementation using single-plane ion crystals in a Penning trap.

قيم البحث

اقرأ أيضاً

Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near the ionization threshold, have electron temperatures in the 1-1000 kelvin range and ion temperatures from tens of millikelvin to a few kelvin. They represent a new frontier in the study of neutral plasmas, which traditionally deals with much hotter systems, but they also blur the boundaries of plasma, atomic, condensed matter, and low temperature physics. Modelling these plasmas challenges computational techniques and theories of non-equilibrium systems, so the field has attracted great interest from the theoretical and computational physics communities. By varying laser intensities and wavelengths it is possible to accurately set the initial plasma density and energy, and charged-particle-detection and optical diagnostics allow precise measurements for comparison with theoretical predictions. Recent experiments using optical probes demonstrated that ions in the plasma equilibrate in a strongly coupled fluid phase. Strongly coupled plasmas, in which the electrical interaction energy between charged particles exceeds the average kinetic energy, reverse the traditional energy hierarchy underlying basic plasma concepts such as Debye screening and hydrodynamics. Equilibration in this regime is of particular interest because it involves the establishment of spatial correlations between particles, and it connects to the physics of the interiors of gas-giant planets and inertial confinement fusion devices.
85 - J. Castro , P. McQuillen , 2010
We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbatio ns oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.
77 - P. Gupta , S. Laha , C. E. Simien 2007
We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elast ic-collision regime at low initial Gamma_e, which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma_e in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas.
151 - G. Bannasch , T. Pohl 2011
In plasmas at very low temperatures formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ~ T^(-9/2) scaling of the corresponding recombination rate with the electron temperature T. While this law is wel l established at high temperatures, the unphysical divergence as T -> 0 clearly suggest a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics-Monte-Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence-problem as the plasma enters the ultracold, strongly coupled domain.
61 - T. Pohl , T. Pattard , J.M. Rost 2004
Recent experiments with ultracold neutral plasmas show an intrinsic heating effect based on the development of spatial correlations. We investigate whether this effect can be reversed, so that imposing strong spatial correlations could in fact lead t o cooling of the ions. We find that cooling is indeed possible. It requires, however, a very precise preparation of the initial state. Quantum mechanical zero-point motion sets a lower limit for ion cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا