ﻻ يوجد ملخص باللغة العربية
Recent developments on emergence of logarithmic terms in correlators or response functions of models which exhibit dynamical symmetries analogous to conformal invariance in not necessarily relativistic systems are reviewed. The main examples of these are logarithmic Schrodinger-invariance and logarithmic conformal Galilean invariance. Some applications of these ideas to statistical physics are described.
We show how logarithmic terms may arise in the correlators of fields which belong to the representation of the Schrodinger-Virasoro algebra (SV) or the affine Galilean Conformal Algebra (GCA). We show that in GCA, only scaling operator can have a Jor
Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra ({sc ecga}) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, spe
The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to th
There exists a certain argument that in even dimensions, scale invariant quantum field theories are conformal invariant. We may try to extend the argument in $2n + epsilon$ dimensions, but the naive extension has a small loophole, which indeed shows
We present an expression for the generating function of correlation functions of the sine-Gordon integrable field theory on a cylinder, with compact space. This is derived from the Destri-De Vega integrable lattice regularization of the theory, formu