ترغب بنشر مسار تعليمي؟ اضغط هنا

The Breton-Manko equatorially antisymmetric binary configuration revisited

46   0   0.0 ( 0 )
 نشر من قبل Vladimir S. Manko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Breton-Manko solution for two identical counter-rotating Kerr-Newman charged masses is rewritten in the physical parametrization involving Komar quantities. The new form of the solution turns out to be very convenient for verifying that the black-hole sector of the Breton-Manko binary configuration saturates a recent geometric inequality for interacting black holes with struts discovered by Gabach Clement.

قيم البحث

اقرأ أيضاً

170 - Joseph Samuel 2017
The double slit experiment is iconic and widely used in classrooms to demonstrate the fundamental mystery of quantum physics. The puzzling feature is that the probability of an electron arriving at the detector when both slits are open is not the sum of the probabilities when the slits are open separately. The superposition principle of quantum mechanics tells us to add amplitudes rather than probabilities and this results in interference. This experiment defies our classical intuition that the probabilities of exclusive events add. In understanding the emergence of the classical world from the quantum one, there have been suggestions by Feynman, Diosi and Penrose that gravity is responsible for suppressing interference. This idea has been pursued in many different forms ever since, predominantly within Newtonian approaches to gravity. In this paper, we propose and theoretically analyse two `gedanken or thought experiments which lend strong support to the idea that gravity is responsible for decoherence. The first makes the point that thermal radiation can suppress interference. The second shows that in an accelerating frame, Unruh radiation plays the same role. Invoking the Einstein equivalence principle to relate acceleration to gravity, we support the view that gravity is responsible for decoherence.
In this paper the $f(R)$ global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some part icular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopoles charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopoles core is shaped by a class of spacetime metrics which includes those ones analyzed here. In order to assess the gravitational properties of this system, we analyse the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.
We revisit the status of scalar-tensor theories with applications to dark energy in the aftermath of the gravitational wave signal GW170817 and its optical counterpart GRB170817A. At the level of the cosmological background, we identify a class of th eories, previously declared unviable in this context, whose anomalous gravitational wave speed is proportional to the scalar equation of motion. As long as the scalar field is assumed not to couple directly to matter, this raises the possibility of compatibility with the gravitational wave data, for any cosmological sources, thanks to the scalar dynamics. This newly rescued class of theories includes examples of generalised quintic galileons from Horndeski theories. Despite the promise of this leading order result, we show that the loophole ultimately fails when we include the effect of large scale inhomogeneities.
We present the results of 14 simulations of nonspinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1/100leq qleq1$. For each of these simulations we perform three runs at increasing resolution to assess the finite difference error s and to extrapolate the results to infinite resolution. For $qgeq 1/6$, we follow the evolution of the binary typically for the last ten orbits prior to merger. By fitting the results of these simulations, we accurately model the peak luminosity, peak waveform frequency and amplitude, and the recoil of the remnant hole for unequal mass nonspinning binaries. We verify the accuracy of these new models and compare them to previously existing empirical formulas. These new fits provide a basis for a hierarchical approach to produce more accurate remnant formulas in the generic precessing case. They also provide input to gravitational waveform modeling.
106 - M. Hortacsu 2020
We use Heun type solutions given in cite{Suzuki} for the radial Teukolsky equation, written in the background metric of the Kerr-Newman-de Sitter geometry, to calculate the quasinormal frequencies for polynomial solutions and the reflection coefficie nt for waves coming from the de Sitter horizon and reflected at the outer horizon of the black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا