ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of double-well Bose-Einstein Condensates subject to external Gaussian white noise

154   0   0.0 ( 0 )
 نشر من قبل Qiang Gu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamical properties of the Bose-Einstein condensate in double-well potential subject to Gaussian white noise are investigated by numerically solving the time-dependent Gross-Pitaevskii equation. The Gaussian white noise is used to describe influence of the random environmental disturbance on the double-well condensate. Dynamical evolutions from three different initial states, the Josephson oscillation state, the running phase and $pi$-mode macroscopic quantum self-trapping states are considered. It is shown that the system is rather robust with respect to the weak noise whose strength is small and change rate is high. If the evolution time is sufficiently long, the weak noise will finally drive the system to evolve from high energy states to low energy states, but in a manner rather different from the energy-dissipation effect. In presence of strong noise with either large strength or slow change rate, the double-well condensate may exhibit very irregular dynamical behaviors.



قيم البحث

اقرأ أيضاً

150 - Man-Man Pang , Yajiang Hao 2016
We investigate the internal dynamics of the spinor Bose-Einstein Condensates subject to dissipation by solving the Lindblad master equation. It is shown that for the condensates without dissipation its dynamics always evolve along specific orbital in the phase space of ($n_0$, $theta$) and display three kinds of dynamical properties including Josephson-like oscillation, self-trapping-like oscillation and running phase. In contrast, the condensates subject to dissipation will not evolve along the specific dynamical orbital. If component-1 and component-(-1) dissipate in different rates, the magnetization $m$ will not conserve and the system transits between different dynamical regions. The dynamical properties can be exhibited in the phase space of ($n_0$, $theta$, $m$).
155 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
224 - Y. P. Huang , M. G. Moore 2007
This paper has been withdrawn. It is based on numerical results limited by computing resources to N=3000 atoms. Using a newly understood geometric method we find that the observed scaling with N saturates at around N=7000 or even higher. In light of this new finding we withdraw the paper and will submit a revised manuscript reflecting our new understanding.
276 - Lei Tan , Bin Wang , Peter Barker 2012
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several int eresting phenomena arise which are the focuses of this work. For the energy structure, the bistability appears in the energy levels due to this atoms-cavity field nonlinearity, and the same phenomena can be found in the intra-cavity photons number. With an increase of the pump-cavity detunings, the higher and lower energy levels show a loop structure due to this cavity-mediated effects. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
209 - V.O. Nesterenko , A.N. Novikov , 2009
A complete adiabatic transport of Bose-Einstein condensate in a double-well trap is investigated within the Landau-Zener (LZ) and Gaussian Landau-Zener (GLZ) schemes for the case of a small nonlinearity, when the atomic interaction is weaker than the coupling. The schemes use the constant (LZ) and time-dependent Gaussian (GLZ) couplings. The mean field calculations show that LZ and GLZ suggest essentially different transport dynamics. Significant deviations from the case of a strong coupling are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا