ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

41   0   0.0 ( 0 )
 نشر من قبل Rishi Khatri
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few mu K which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.

قيم البحث

اقرأ أيضاً

Spatially fluctuating primordial magnetic fields (PMFs) inhomogeneously reheat the Universe when they dissipate deep inside the horizon before recombination. Such an energy injection turns into an additional photon temperature perturbation. We invest igate secondary cosmic microwave background (CMB) temperature anisotropies originated from this mechanism, which we call {it inhomogeneous magnetic reheating}. We find that it can bring us information about non-linear coupling between PMFs and primordial curvature perturbations parametrized by $b_{rm NL}$, which should be important for probing the generation mechanism of PMFs. In fact, by using current CMB observations, we obtain an upper bound on the non-linear parameter as $log (b_{rm NL} (B_{lambda}/{rm nG})^2) lesssim {-36.5n_{B} - 94.0}$ with $B_{lambda}$ and $n_{rm B}$ being a magnetic field amplitude smoothed over $lambda=1; {rm Mpc}$ scale and a spectral index of the PMF power spectrum, respectively. Our constraints are far stronger than a previous forecast based on the future CMB spectral distortion anisotropy measurements because inhomogeneous magnetic reheating covers a much wider range of scales, i.e., $1; {rm Mpc}^{-1} lesssim klesssim 10^{15}; {rm Mpc}^{-1}$.
The primordial magnetic fields (PMFs) produced in the early universe are expected to be the origin of the large-scale cosmic magnetic fields. The PMFs are considered to leave a footprint on the cosmic microwave background (CMB) anisotropies due to bo th the electromagnetic force and gravitational interaction. In this paper, we investigate how the PMFs affect the CMB anisotropies on smaller scales than the mean-free-path of the CMB photons. We solve the baryon Euler equation with Lorentz force due to the PMFs, and we show that the vector-type perturbations from the PMFs induce the CMB anisotropies below the Silk scale as $ell>3000$. Based on our calculations, we put a constraint on the PMFs from the combined CMB temperature anisotropies obtained by Planck and South Pole Telescope (SPT). We have found that the highly-resolved temperature anisotropies of the SPT 2017 bandpowers at $ell lesssim 8000$ favor the PMF model with a small scale-dependence. As a result, the Planck and SPTs joint-analysis puts a constraint on the PMF spectral index as $n_B<-1.14$ at 95% confidence level (C.L.), and this is more stringent compared with the Planck-only constraint $n_B<-0.28$. We show that the PMF strength normalized on the co-moving 1 Mpc scale is also tightly constrained as $B_{1mathrm{Mpc}}<1.5$ nG with Planck and SPT at 95% C.L., while $B_{1mathrm{Mpc}}<3.2$ nG only with the Planck data at 95% C.L. We also discuss the effects on the cosmological parameter estimate when including the SPT data and CMB anisotropies induced by the PMFs.
33 - G. DAmico 2007
In this paper we present a complete computation of the Cosmic Microwave Background (CMB) anisotropies up to third order from gravitational perturbations accounting for scalar, vector and tensor perturbations. We then specify our results to the large scale limit, providing the evolution of the gravitational potentials in a flat universe filled with matter and cosmological constant which characterizes the Integrated Sachs-Wolfe effect. As a byproduct in the large scale approximation we are able to give non-perturbative solutions for the photon geodesic equations. Our results are the first step to provide a complete theoretical prediction for cubic non-linearities which are particularly relevant for characterizing the level of non-Gaussianity in the CMB through the detection of the four-point angular connected correlation function (trispectrum). For this purpose we also allow for generic initial conditions due to primordial non-Gaussianity.
Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihanen et al. (2005). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.
In the standard model of cosmology, Cosmic Microwave Background (CMB) sky is expected to show no symmetry preferences. Following our previous studies, we explore the presence of any particular parity preference in the latest full-mission CMB temperat ure maps from ESAs Planck probe. Specifically, in this work, we will probe (a)symmetry in power between even and odd multipoles of CMB via its angular power spectrum from Planck 2015 data. Further we also assess any specific preference for mirror parity (a)symmetry, by analysing the power contained in $l+m$=even or odd mode combinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا