ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transfer nano-oscillators

126   0   0.0 ( 0 )
 نشر من قبل Giovanni Finocchio
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of spin transfer nano-oscillators (STNOs) to generate microwave signal in nanoscale devices have aroused tremendous and continuous research interest in recent years. Their key features are frequency tunability, nanoscale size, broad working temperature, and easy integration with standard silicon technology. In this feature article, we give an overview of recent developments and breakthroughs in the materials, geometry design and properties of STNOs. We focus in more depth on our latest advances in STNOs with perpendicular anisotropy showing a way to improve the output power of STNO towards the {mu}W range. Challenges and perspectives of the STNOs that might be productive topics for future research were also briefly discussed.



قيم البحث

اقرأ أيضاً

Spin transfer torque nano-oscillators are potential candidates for replacing the traditional inductor based voltage controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions whi ch are disadvantaged by low power outputs and poor conversion efficiencies. In this letter, we theoretically propose to use resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present device designs geared toward a high microwave output power and an efficient conversion of the d.c. input power. We attribute these robust qualities to the resulting non-trivial spin current profiles and the ultra high tunnel magnetoresistance, both arising from resonant spin filtering. The device designs are based on the nonequilibrium Greens function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewskis equation and the Poissons equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around $775%$ and an efficiency enhancement of over $1300%$ in comparison with typical trilayer designs. We also rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. This work sets stage for pentalyer spin transfer torque nano-oscillator device designs that extenuate most of the issues faced by the typical trilayer designs.
Due to their nonlinear properties, spin transfer nano-oscillators can easily adapt their frequency to external stimuli. This makes them interesting model systems to study the effects of synchronization and brings some opportunities to improve their m icrowave characteristics in view of their applications in information and communication technologies and to design innovative computing architectures. So far, mutual synchronization of spin transfer nano-oscillators through propagating spin-waves and exchange coupling in a common magnetic layer has been demonstrated. Here we show that the dipolar interaction is also an efficient mechanism to synchronize neighbouring oscillators. We experimentally study a pair of vortex-based spin-transfer nano-oscillators, in which mutual synchronization can be achieved despite a significant frequency mismatch between oscillators. Importantly, the coupling efficiency is controlled by the magnetic configuration of the vortices, as confirmed by an analytical model highlighting the physics at play in the synchronization process as well as by micromagnetic simulations.
In the last decade, two revolutionary concepts in nano magnetism emerged from research for storage technologies and advanced information processing. The first suggests the use of magnetic domain walls (DWs) in ferromagnetic nanowires to permanently s tore information in DW racetrack memories. The second proposes a hardware realisation of neuromorphic computing in nanomagnets using nonlinear magnetic oscillations in the GHz range. Both ideas originate from the transfer of angular momentum from conduction electrons to localised spins in ferromagnets, either to push data encoded in DWs along nanowires or to sustain magnetic oscillations in artificial neurones. Even though both concepts share a common ground, they live on very different time scales which rendered them incompatible so far. Here, we bridge both ideas by demonstrating the excitation of magnetic auto-oscillations inside nano-scale DWs using pure spin currents.
215 - H. T. Wu , Lei Wang , Tai Min 2021
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re lative phases, in this new synchronized state two STNOs have the same frequency, but their relative phase varies periodically within the common period, resulting in a dynamic waving pattern. The amplitude of the oscillating relative phase depends on the coupling strength of two STNOs, as well as the driven currents. The dancing synchronization turns out to be universal, and can exist in two nonlinear Van der Pol oscillators coupled both reactively and dissipativly. Our findings open doors for new functional STNO-based devices.
Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic (FM) and nonmagnetic (NM) metals are ultra-compact current-controlled microwave signal sources. They serve as a convenient testbed for studies of spin-orbit torque physics and are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance (AMR) of the FM layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be enhanced by nearly three orders of magnitude without compromising its structural simplicity. Addition of a FM reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance (CIP GMR) to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of GMR compared to that of AMR and different angular dependences of GMR and AMR. Our results pave the way for practical applications of spin-orbit torque nano-oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا