ﻻ يوجد ملخص باللغة العربية
CdSe-Au networks were synthesized by a colloidal chemistry technique. They entail CdSe nanorods with a diameter of ~10 nm and a length of ~40 nm, which are joined together by Au domains (~5 nm). Individual networks were positioned by AC dielectrophoresis between bow-tie electrodes with a gap of ~100 nm and their conductivity as well as the photoelectrical properties were investigated. Nanorod networks, with multiple Au domains on the nanorod surface, displayed stable conductivity that was not sensitive to blue laser light illumination. Such nanostructures were transformed by thermal annealing to networks with Au domains only at the nanorod tips. In this system the overall conductivity was reduced, but a clear photocurrent signal could be detected, manifesting semiconductor behavior.
We report the effects of variation in length on the electronic structure of CdSe nanorods derived from atomic clusters and passivated by fictitious hydrogen atoms. These nanorods are augmented by attaching gold clusters at both the ends to form a nan
We investigate the photoconductance of single-walled carbon nanotube-nanocrystalhybrids. The nanocrystals are bound to the nanotubes via molecular recognition. We find that the photoconductance of the hybrids can be adjusted by the absorption charact
The pressing quest for overcoming Boltzmann tyranny in low-power nanoscale electronics revived the thoughts of engineers of early 1930-s on the possibility of negative circuit constants. The concept of the ferroelectric-based negative capacitance (NC
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theor
Despite the recent progress on two-dimensional multilayer materials (2DMM) with weak interlayer interactions, the investigation on 2DMM with strong interlayer interactions is far from its sufficiency. Here we report on first-principles calculations t