ترغب بنشر مسار تعليمي؟ اضغط هنا

CAST constraints on the axion-electron coupling

47   0   0.0 ( 0 )
 نشر من قبل Jaime Ruz Armendariz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the BCA processes. Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.

قيم البحث

اقرأ أيضاً

By combining Hubble Space Telescope (HST) and ground based optical and near-infrared photometric samples, we derive the RGB tip absolute magnitude of 22 galactic globular clusters (GGCs). The effects of varying the distance and the metallicity scales are also investigated. Then we compare the observed tip luminosities with those predicted by state-of-the-art stellar models that include the energy-loss due to the axion production in the degenerate core of red giant stars. We find that theoretical predictions including only the energy-loss by plasma neutrinos are, in general, in good agreement with the observed tip bolometric magnitudes, even though the latter are about 0.04 mag brighter, on the average. This small shift may be the result of systematic errors affecting the evaluation of the RGB tip bolometric magnitudes or, alternatively, it could be ascribed to an axion-electron coupling causing a non-negligible thermal production of axions. In order to estimate the strength of this possible axion sink, we perform a cumulative likelihood analysis using the RGB tips of the whole set of 22 GGCs. All the possible source of uncertainties affecting both the measured bolometric magnitudes and the corresponding theoretical predictions are carefully considered. As a result, we find that the value of the axion-electron coupling parameter that maximizes the likelihood probability is gae/10^13=0.60(+0.32;-0.58). This hint is valid, however, if the dominant energy sinks operating in the core of red giant stars are standard neutrinos and axions coupled with electrons. Any additional energy-loss process, not included in the stellar models, would reduce such a hint. Nevertheless, we find that values gae/10^13 > 1.48 can be excluded with a 95% of confidence.
We present a preliminary study of the Globular Cluster RGB devoted to improve the available constraint for the axion-electron coupling. By means of multi-band IR photometry of the cluster M3 we obtain g_{ae}/10^{-13} < 2.57 (95% C.L.).
During 2003--2015, the CERN Axion Solar Telescope (CAST) has searched for $atogamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. In its final phase of solar axion searches (2013--2015), C AST has returned to evacuated magnet pipes, which is optimal for small axion masses. The absence of a significant signal above background provides a world leading limit of $g_{agamma} < 0.66 times 10^{-10} {rm GeV}^{-1}$ (95% C.L.) on the axion-photon coupling strength for $m_a lesssim 0.02$ eV. Compared with the first vacuum phase (2003--2004), the sensitivity was vastly increased with low-background x-ray detectors and a new x-ray telescope. These innovations also serve as pathfinders for a possible next-generation axion helioscope.
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($beta_{rm m}$) and to photons ($beta_{gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$,$keV to 400$,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $beta_{gamma}!lesssim!10^{11}$ for $1<beta_{rm m}<10^6$.
If the dark matter (DM) were composed of axions, then structure formation in the Universe would be suppressed below the axion Jeans scale. Using an analytic model for the halo mass function of a mixed DM model with axions and cold dark matter, combin ed with the abundance-matching technique, we construct the UV-luminosity function. Axions suppress high-$z$ galaxy formation and the UV-luminosity function is truncated at a faintest limiting magnitude. From the UV-luminosity function, we predict the reionization history of the universe and find that axion DM causes reionization to occur at lower redshift. We search for evidence of axions using the Hubble Ultra Deep Field UV-luminosity function in the redshift range $z=6$-$10$, and the optical depth to reionization, $tau$, as measured from cosmic microwave background polarization. All probes we consider consistently exclude $m_alesssim 10^{-23}text{ eV}$ from contributing more than half of the DM, with our strongest constraint ruling this model out at more than $8sigma$ significance. In conservative models of reionization a dominant component of DM with $m_a=10^{-22}text{ eV}$ is in $3sigma$ tension with the measured value of $tau$, putting pressure on an axion solution to the cusp-core problem. Tension is reduced to $2sigma$ for the axion contributing only half of the DM. A future measurement of the UV-luminosity function in the range $z=10$-$13$ by JWST would provide further evidence for or against $m_a=10^{-22}text{ eV}$. Probing still higher masses of $m_a=10^{-21}text{ eV}$ will be possible using future measurements of the kinetic Sunyaev-Zeldovich effect by Advanced ACTPol to constrain the time and duration of reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا